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ABSTRACT  

Duplicate detection is the process of classifying numerous representations of same real world 

entities. Presently, these methods made essential to route ever higher datasets in constantly 

squatter period and sustaining the eminence of a dataset befits progressively problematic. 

Progressive duplicate detection algorithms significantly intensify the efficiency of 

discovering replicas if the execution time is inadequate. Exploiting the expansion of the 

overall process within the time available by reporting results in much prior than previous 

methodologies. Here, widespread tests display that progressive algorithms can double the 

efficiency over time of traditional duplicate detection and ominously progress upon 

connected work. 

Keywords: Duplicate detection, entity resolution, pay-as-you-go, progressiveness, data 

cleaning. 

 

INTRODUCTION 

Data are among the utmost significant 

possessions of a company. But because of 

data changes and sloppy data entry, errors 

such as duplicate entries might occur, 

making data cleansing and in particular 

duplicate detection indispensable[1]. 

However, the pure size of today’s datasets 

solidify duplicate detection processes 

luxurious. Online retailers, for example, 

offer huge catalogs comprising a 

constantly growing set of items from many 

different suppliers. As independent 

persons change the product portfolio, 

duplicates arise. While there is an obvious 

need for deduplication, online shops 

without downtime cannot give traditional 

deduplication[1],[2],[7]. Progressive 

duplicate detection identifies most 

duplicate pairs early in the detection  

 

process. Instead of plummeting the overall 

time needed to finish the entire process, 

progressive approaches try to reduce the 

average time after which a duplicate is 

found. We propose two novel, progressive 

duplicate detection algorithms namely 

progressive arranged neighborhood 

method (PSNM), which achieves best on 

small and almost clean datasets, and 

progressive blocking (PB), which performs 

best on large and very dirty datasets. Both 

augment the efficacy of duplicate detection 

even on very large datasets[5].The 

contributions made in improving 

efficiency on progressive duplicate 

detection are two dynamic progressive 

duplicate detection algorithms, PSNM and 

PB, which expose different[6] strengths 

and outperform current approaches, a  



 

Vol 07 Issue01, Jan 2018                            ISSN 2456 – 5083 Page 372 

 

 

concurrent progressive approach for the 

multi-pass method and adapt an 

incremental transitive closure algorithm 

that together form the first complete 

progressive duplicate detection workflow, 

a novel quality measure for progressive 

duplicate detection to objectively rank the 

performance of different approaches. The 

duplicate detection workflow includes the 

three steps pair-selection, pair-wise 

comparison, and clustering. For a 

progressive workflow, only the first and 

last steps need to be adapted. Therefore, 

we do not scrutinize the appraisal step and 

propose algorithms that are independent of 

the quality of the similarity function. 

Approaches build upon the most 

commonly used methods[8] sorting and 

traditional blocking, and therefore make 

the same assumptions: duplicates are 

expected to be arranged close to one 

another or grouped in same buckets, 

respectively. 

RELATED WORK 

Much research on duplicate detection [2], 

[3], also known as entity resolution and by 

many other names, focuses on pair 

selection algorithms that try to maximize 

recall on the one hand and efficiency on 

the other hand. The most prominent 

algorithms in this area are Blocking [4] 

and the arranged neighborhood method 

(SNM) [5].  

Adaptive techniques  

Previous publications on duplicate 

detection often focus on reducing the 

overall runtime. Thereby, some of the 

proposed algorithms are already capable of 

estimating the quality of comparison 

candidates [6],[7], [8]. The algorithms use 

this information to choose the comparison  

 

candidates more carefully.For the same 

reason, other approaches utilize adaptive 

windowing techniques, which dynamically 

adjust the window size depending on the 

amount of recently found duplicates [9], 

[10]. These adaptive techniques 

dynamically improve the efficiency of 

duplicate detection, but in contrast to our 

progressive techniques, they need to run 

for certain periods of time and cannot 

maximize the efficiency for any given time 

slot. Progressive techniques. In the last 

few years, the economic need for 

progressive algorithms also initiated some 

concrete studies in this domain. For 

instance, pay-as- you-go algorithms for 

information integration on large scale 

datasets have been presented [11]. Other 

works introduced progressive data 

cleansing algorithms for the analysis of 

sensor data streams [12]. However, these 

approaches cannot be applied to duplicate 

detection. Xiao et al. proposed a top-k 

similarity join that uses a special index 

structure to estimate promising 

comparison candidates [13]. This approach 

progressively resolves duplicates and also 

eases the parameterization problem. 

Although the result of this approach is 

similar to our approaches (a list of 

duplicates almost ordered by similarity), 

the focus differs: Xiao et al. find the top-k 

most similar duplicates regardless of how 

long this takes by weakening the similarity 

threshold; we find as many duplicates as 

possible in a given time. That these 

duplicates are also the most similar ones is 

a side effect of our approaches. pay-as-

you-go entity resolution by Whang et al. 

introduced three kinds of progressive 

duplicate detection techniques, called  
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“hints” [1]. A hint defines a probably good 

execution order for the comparisons in 

order to match promising record pairs 

earlier than less promising record pairs. 

However, all presented hints produce static 

orders for the comparisons and miss the 

opportunity to dynamically adjust the 

comparison order at runtime based on 

intermediate results. Some of our 

techniques directly address this issue. 

Furthermore, the presented duplicate 

detection approaches calculate a hint only 

for a specific partition, which is a 

(possibly large) subset of records that fits 

into main memory. By completing one 

partition of a large dataset after another, 

the overall duplicate detection process is 

no longer progressive. This issue is only 

partly addressed in [1], which proposes to 

calculate the hints using all partitions. The 

algorithms presented in our paper use a 

global ranking for the comparisons and 

consider the limited amount of available 

main memory. The third issue of the 

algorithms introduced by Whang et al. 

relates to the proposed pre-partitioning 

strategy: By using mini hash signatures 

[14] for the partitioning, the partitions do 

not overlap. However, such an overlap 

improves the pair-selection [15], and thus 

our algorithms consider overlapping 

blocks as well. In contrast to [1], we also 

progressively solve the multi- pass method 

and transitive closure calculation, which 

are essential for a completely progressive 

workflow. Finally, we provide a more 

extensive evaluation on considerably 

larger datasets and employ a novel quality 

measure to quantify the performance of 

our progressive algorithms.  

 

 

Additive TechniquesBy combining the 

arranged neighborhood method with 

blocking techniques, pair-selection 

algorithms can be built that choose the 

comparison candidates much more 

precisely. The Arranged Blocks algorithm 

[15], for instance, applies blocking 

techniques on a set of input records and 

then slides a small window between the 

different blocks to select additional 

comparison candidates. Our progressive 

PB algorithm also utilizes sorting and 

blocking techniques; but instead of sliding 

a window between blocks, PB uses a 

progressive block-combination technique, 

with which it dynamically chooses 

promising comparison candidates by their 

likelihood of matching. The recall of 

blocking and windowing techniques can 

further be improved by using multi-pass 

variants [5]. These techniques use different 

blocking or sorting keys in multiple, 

successive executions of the pair-selection 

algorithm. Accordingly, we present 

progressive multi-pass approaches that 

interleave the passes of different keys. 

SYSTEM DESIGN 

A. Progressive SNM 

The progressive arranged neighborhood 

method is centered on the traditional 

organized neighborhood method [5]. 

PSNM sorts the input data using a 

predefined sorting key and only compares 

records that are within a window of 

records in the arranged order. The 

disposition is the records that are close in 

the arranged order are more likely to be 

duplicates than records that are far apart, 

because they are already similar with 

respect to their sorting key. More 

precisely, the distance of two records in  
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their sort ranks (rank-distance) gives 

PSNM an assessment of their matching 

likelihood. The PSNM algorithm uses this 

insight to iteratively vary the window size, 

opening with a small window of size two 

that hastily finds the most encouraging 

records. This stagnant methodology has 

already been proposed as the arranged list 

of record pairs (SLRPs) hint [1]. The 

PSNM algorithm varies by animatedly 

altering the execution order of the 

comparisons[9] based on intermediate 

results (Look-Ahead). Likewise, PSNM 

integrates a progressive sorting phase 

(MagpieSort) and can gradually process 

vividly loftier datasets.  

B. PSNM Algorithm 

The algorithm portrayed the execution of 

PSNM, takes five input parameters: D is a 

reference to the data, which has not been 

loaded from disk yet. The sorting key K 

defines the attribute or attribute 

combination that should be used in the 

sorting step. W stipulates the maximum 

window size, which corresponds to the 

window size of the traditional organized 

neighborhood method. When using early 

conclusion, this parameter can be set to an 

hopefully high default value. Parameter I 

defines the enlargement interval for the 

progressive iterations. The last parameter 

N specifies the number of records in the 

dataset. This number can be gleaned in the 

sorting step, but we list it as a parameter 

for presentation purposes.[10].  

 

 

 

 

 

 

 

 
C. Progressive Blocking  

In contrast to windowing 

algorithms, blocking algorithms assign 

each record to a fixed group of similar 

records (the blocks) and then compare all 

pairs of records within these groups. 

Progressive blocking is a novel approach 

that builds upon an equidistant blocking 

technique and the successive enlargement 

of blocks. Like PSNM, it also pre sorts the 

records to use their rank-distance in this 

sorting for connection estimation. Based 

on the sorting, PB first[11] creates and 

then progressively extends a fine-grained 

blocking[10]. These block extensions are 

specifically executed on neighborhoods 

around already identified duplicates, which 

enables PB to expose clusters earlier than 

PSNM.  

 
PB in a block comparison matrix. 
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After the pre-processing, the PB algorithm 

starts gradually spreading the most 

promising block pairs. In each loop, PB 

first takes those block pairs best BPs from 

the bPairs-list that reported the highest 

duplicate density. Thereby, at most b Per 

P=4 block pairs can be taken, because the 

algorithm needs to load two blocks per 

best BP and each extension of a best BP 

delivers two partition block pairs. 

Nevertheless, if such an extension 

exceeds[9] the maximum block range R, 

the last best BP is discarded. Having 

successfully defined the most promising 

block pairs, For all partition block[8],[1], 

pairs, the procedure compares each record 

of the first block to all records of the 

second block. The recognized duplicate 

pairs are then emitted. Additionally, 

Assigns the duplicate pairs to the current 

to later rank the duplicate density of this 

block pair with the density in other block 

pairs[12]. Thereby, the amount of 

duplicates is regularized by the number of 

comparisons, since the last block is 

frequently smaller than all other blocks. If 

the PB algorithm is not terminated 

prematurely, it automatically finishes 

when the list of bPairs is empty, e.g., no 

new block pairs within the maximum 

block range R can be found.  

 
 

IMPLEMENTATION 

A. Blocking Techniques 

Block size: A block pair entailing 

of two small blocks outlines only few 

assessments. Using such small blocks, the 

PB algorithm cautiously chooses the most 

promising comparisons and avoids many 

less promising comparisons from a wider 

neighborhood. However, block pairs based 

on small blocks cannot characterize the 

duplicate density in their neighborhood 

well, because they represent a too small 

sample. A block pair consisting of large 

blocks, in contrast, may define too many, 

less promising comparisons, but produce 

better samples for the extension step. The 

block size parameter S, therefore, trades 

off the execution of non-promising 

comparisons and the[12] extension quality. 

In primary experimentations, it is 

identified that five records per block to be 

a usually good and not sensitive value. 

Maximum block range: The maximum 

block range parameter R is redundant 

when using early termination. For our 

estimation, nevertheless, we use this  
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constraint to check the PB 

algorithm to practically the same 

comparisons executed by the traditional 

arranged neighborhood method. We 

cannot restrict PB to execute exactly the 

same comparisons, because the selection 

of comparison candidates is more fine-

grained by using a window than by using 

blocks. Nevertheless, the calculation of b 

windowSize S c causes PB to execute only 

marginally fewer comparisons.[13] 

Extension strategy: The extend(bestBP) 

function returns some block pairs in the 

neighborhood of the given bestBP. In 

implementation, the function extends a 

block pair from more eager extension 

strategies that select more block pairs from 

the neighborhood increase the 

progressiveness, if many large duplicate 

clusters are expected. By using a block 

size S close to the average duplicate 

cluster size, more eager extension 

strategies have, however, not shown a 

significant impact on PB’s performance in 

our experiments. The benefit of detecting 

some cluster duplicates earlier was usually 

as high as the drawback of executing 

fruitless comparisons.[14] MagpieSort: To 

estimate the records’ similarities, the PB 

algorithm uses an order of records. As in 

the PSNM algorithm, this order can be 

calculated using the progressive 

MagpieSort algorithm: Since each iteration 

of this algorithm delivers a perfectly 

arranged subset of records, the PB 

algorithm can directly use this to execute 

the initial comparisons.  

B. Attribute Concurrency 

The best sorting or blocking key for a 

duplicate detection algorithm is generally 

unknown or hard to find. Most duplicate  

 

detection frameworks tackle this key 

selection unruly by smearing the multi-

pass execution method[15]. This routine 

finishes the duplicate detection algorithm 

multiple times using different keys in each 

pass. However, the execution order among 

the different keys is random. 

Consequently, favoring good keys over 

poorer keys already increases the 

progressiveness of the multi- pass method. 

In this section, we present two multi- pass 

algorithms that dynamically interleave the 

different passes based on intermediate 

results to execute promising iterations 

earlier. The first algorithm is the attribute 

synchronized PSNM (AC-PSNM), which 

is the progressive enactment of the multi-

pass method for the PSNM algorithm, and 

the second algorithm is the attribute 

concurrent PB (AC- PB), which is the 

conforming implementation for the PB 

algorithm[14].  

The main loop interweaves the 

broadenings and assessments of all block 

pairs by always choosing the most 

promising block pairs. In this way, the 

procedure adventures the[13] diverse 

strengths and weaknesses of each key 

independently. For instance, one key  
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mightbe good in consortium records of 

duplicate cluster A and another key might 

group records of cluster B more 

competently[15].  

EVALUATION & EXPERIMENTAL 

RESULTS 

Two progressive duplicate detection 

algorithms namely PSNM and PB, and 

their Attribute Concurrency techniques. 

Testing algorithms using a much larger 

dataset and a tangible use case. The graphs 

used for performance measurements plot 

the total number of reported duplicates 

over time. Each duplicate is a absolutely 

matched record pair. For healthier 

readability, we physically marked some 

data points from the many hundred 

measured data points that make up a 

graph.[12] The work emphases on growing 

productivity while keeping the same 

efficacy. Hence, we assume a given, 

correct similarity quantity; it is treated as 

an exchangeable black box.  

MEMORY LIMITATION 

We assume that many real-world datasets 

are considerably larger than the amount of 

available main memory which limit the 

main memory of the machine to 1 GB so 

that the DBLP- and CSX-dataset do not fit 

into main memory entirely. 1 GB of 

memory corresponds to about 100,000 

records that can be loaded at once. The 

artificial limitation actually degrades the 

performance of algorithms more than the 

performance of the non-progressive 

baseline, because progressive algorithms 

need to access partitions several times[11].  

QUALITY MEASURE 

In this way, the calculated quality values 

are visually easy to understand. Baseline 

approach: The baseline algorithm, which  

 

we use in our tests, is the standard 

arranged neighborhood method. This 

algorithm has been implemented similar to 

the PSNM algorithm so that it may use 

load-compare parallelism as well. In this 

experiments, it is always executed that 

SNM and PSNM with the same parameters 

and optimizations to compare them in a 

fair way. 

 
Effect of partition caching and look-

ahead. 

On the DBLP-dataset, load-compare 

parallelism performs almost perfectly: the 

entire load-time is hidden by the compare-

time so that the optimized PSNM 

algorithm and the optimized SNM 

algorithm finish nearly concurrently. This 

is because of the fact that the latency 

hiding effect abridged the runtime of the 

PSNM algorithm by 43 percent but the 

runtime of the SNM algorithm by only 5 

percent. On the[13] larger CSX-dataset, 

conversely, the load-compare parallelism 

strategy reduces the runtime of the SNM 

algorithm by 11 percent and the runtime of 

the PSNM algorithm by only 25 percent. 

This is a notable gain, but since the load 

phases are muchlonger than the compare 

phases on this dataset, the optimization 

cannot hide the full data access latency:  
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the CSX-dataset contains many extremely 

large attribute values that increase the load 

time a lot.  

A. Attribute Concurrency 

Attribute Concurrency algorithms 

AC-PSNM and ACPB gradually execute 

the multi-pass method for the PSNM 

algorithm and PB algorithm, 

correspondingly, favoring good keys over 

poor keys by dynamically ranking 

different passes using their transitional 

results. Comparing AC-PSNM and AC- 

PB to the common multi-pass execution 

model, which resolves the different keys 

sequentially in random order. The 

experiment uses three different[10],[9] 

keys, which are {Title}, {Authors}, and 

{Description}. Since a common multi-pass 

algorithm can execute the different passes 

in any order, it might accidentally choose 

the best or worst order of keys. Therefore, 

we run the traditional, sequential multi-

pass algorithm with the optimal key 

Sequence 1, two mediocre key Sequences 

2 and 3 and the worst key Sequence 4. 

 
Attribute Concurrency on the DBLP-

dataset. 

 

CONCLUSION AND FUTURE 

ENHANCEMENTS 

Improving Efficiency on 

progressive duplicate detection presented 

the progressive arranged neighbourhood 

method and progressive blocking. These 

algorithms escalate the efficacy of 

duplicate detection for state of affairs with 

inadequate execution time. They 

vigorously change the ranking of 

comparison candidates based on 

intermediate results to execute promising 

assessments first and less promising 

evaluations later. To regulate the recital 

increase of these algorithms, a novel 

quality measure for progressiveness that 

integrates seamlessly with existing 

measures is projected. Presently, for the 

construction of a fully progressive 

duplicate detection workflow, a 

progressive sorting method, Magpie, a 

progressive multi-pass execution model, 

Attribute Concurrency, and an incremental 

transitive closure algorithm. The 

adaptations AC-PSNM and AC-PB use 

multiple sort keys concurrently to 

interleave their progressive iterations are 

introduced. By analyzing intermediate 

results, both slants animatedly rank the 

dsifferent sort keys at runtime, 

significantly easing the key selection 

problem. In future work, to combine our 

progressive approaches with scalable 

approaches for duplicate detection to 

deliver results even faster is analyzed. In 

particular, a two phase parallel SNM is 

introduced, which executes a traditional 

SNM on balanced, overlapping partitions. 


