

Vol 08 Issue 04 April 2019 ISSN 2456 - 5083 Page 1

COPY RIGHT

2019 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works. No Reprint should be done to this paper, all copy right is authenticated

to Paper Authors

IJIEMR Transactions, online available on 17 April 2019.

 Link : http://www.ijiemr.org

Title:- A Practical And Secure Multi-Keyword Ranked Search Technique In Cloud Computing.

Volume 08, Issue 04, Pages: 203 - 210.

Paper Authors

CHINTA MOSES RAJU,
,
 CH.N.D.CHAMUNDESWARI.

Department of MCA, SKBR PG College.

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

 To Secure Your Paper As Per UGC Approvals We Are Providing A Electronic Bar

Code

http://www.ijiemr.org/

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 203

A PRACTICAL AND SECURE MULTI-KEYWORD RANKED SEARCH

TECHNIQUE IN CLOUD COMPUTING
1
CHINTA MOSES RAJU

,

2
CH.N.D.CHAMUNDESWARI

1
PG Scholar Department of MCA, SKBR PG College, Amalapuram
2
Lecturer, Department of MCA, SKBR PG College, Amalapuram

ABSTRACT: Due to the increasing popularity of cloud computing, more and more data owners are

motivated to outsource their data to cloud servers for great convenience and reduced cost in data

management. However, sensitive data should be encrypted before outsourcing for privacy

requirements, which obsoletes data utilization like keyword-based document retrieval. In this paper,

we present a secure multi-keyword ranked search scheme over encrypted cloud data, which

simultaneously supports dynamic update operations like deletion and insertion of documents.

Specifically, the vector space model and the widely-used TF_IDF model are combined in the index

construction and query generation. We construct a special tree-based index structure and propose a

“Greedy Depth-first Search” algorithm to provide efficient multi-keyword ranked search. The secure

kNN algorithm is utilized to encrypt the index and query vectors, and meanwhile ensure accurate

relevance score calculation between encrypted index and query vectors. In order to resist statistical

attacks, phantom terms are added to the index vector for blinding search results. Due to the use of our

special tree-based index structure, the proposed scheme can achieve sub-linear search time and deal

with the deletion and insertion of documents flexibly. Extensive experiments are conducted to

demonstrate the efficiency of the proposed scheme.

KEY WORDS: Searchable encryption, multi-keyword ranked search, dynamic update, cloud

computing.

I.INTRODUCTION

Cloud computing has been considered as a new

model of enterprise IT infrastructure, which can

organize huge resource of computing, storage

and applications, and enable users to enjoy

ubiquitous, convenient and on-demand network

access to a shared pool of configurable

computing resources With great efficiency and

minimal economic overhead [1]. Attracted by

these appealing features, both individuals and

enterprises are motivated to outsource their

data to the cloud, instead of purchasing

software and hardware to manage the data

themselves. Despite of the various advantages

of cloud services, outsourcing sensitive

information (such as e-mails, personal health

records, company finance data, government

documents, etc.) to remote servers brings

privacy concerns. The cloud service providers

(CSPs) that keep the data for users may access

users’ sensitive information without

authorization. A general approach to protect the

data confidentiality is to encrypt the data before

outsourcing [2]. However, this will cause a

huge cost in terms of data usability. For

example, the existing techniques on keyword-

based information retrieval, which are widely

used on the plaintext data, cannot be directly

applied on the encrypted data. Downloading all

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 204

the data from the cloud and decrypt locally is

obviously impractical.

In order to address the above problem,

researchers have designed some general-

purpose solutions with fully-homomorphic

encryption [3] or oblivious RAMs [4].

However, these methods are not practical due

to their high computational overhead for both

the cloud sever and user. On the contrary, more

practical special purpose solutions, such as

Searchable Encryption (SE) schemes have

made specific contributions in terms of

efficiency, functionality and security.

Searchable encryption schemes enable the

client to store the encrypted data to the cloud

and execute keyword search over ciphertext

domain. So far, abundant works have been

proposed under different threat models to

achieve various search functionality, such as

single keyword search, similarity search, multi-

keyword boolean search, ranked search, multi-

keyword ranked search, etc. Among them,

multi keyword ranked search achieves more

and more attention for its practical

applicability. Recently, some dynamic schemes

have been proposed to support inserting and

deleting operations on document collection.

These are significant works as it is highly

possible that the data owners need to update

their data on the cloud server. But few of the

dynamic schemes support efficient

multikeyword ranked search.

This paper proposes a secure tree-based search

scheme over the encrypted cloud data, which

supports multikeyword ranked search and

dynamic operation on the document collection.

Specifically, the vector space model and the

widely-used “term frequency (TF) × inverse

document frequency (IDF)” model are

combined in the index construction and query

generation to provide multi keyword ranked

search. In order to obtain high search

efficiency, we construct a tree-based index

structure and propose a “Greedy Depth-first

Search” algorithm based on this index tree. Due

to the special structure of our tree-based index,

the proposed search scheme can flexibly

achieve sub-linear search time and deal with

the deletion and insertion of documents.

The secure kNN algorithm is utilized to encrypt

the index and query vectors, and meanwhile

ensure accurate relevance score calculation

between encrypted index and query vectors. To

resist different attacks in different threat

models, we construct two secure search

schemes: the basic dynamic multi-keyword

ranked search (BDMRS) scheme in the known

ciphertext model, and the enhanced dynamic

multi-keyword ranked search (EDMRS)

scheme in the known background model. Our

contributions are summarized as follows:

1) We design a searchable encryption scheme

that supports both the accurate multi-keyword

ranked search and flexible dynamic operation

on document collection.

2) Due to the special structure of our tree-based

index, the search complexity of the proposed

scheme is fundamentally kept to logarithmic.

And in practice, the proposed scheme can

achieve higher search efficiency by executing

our “Greedy Depth-first Search” algorithm.

Moreover, parallel search can be flexibly

performed to further reduce the time cost of

search process.

II. RELATED WORK

Searchable encryption schemes enable the

clients to store the encrypted data to the cloud

and execute keyword search over ciphertext

domain. Due to different cryptography

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 205

primitives, searchable encryption schemes can

be constructed using public key based

cryptography [5], [6] or symmetric key based

cryptography [7], [8], [9], [10]. Song et al. [7]

proposed the first symmetric searchable

encryption (SSE) scheme, and the search time

of their scheme is linear to the size of the data

collection. Goh [8] proposed formal security

definitions for SSE and designed a scheme

based on Bloom filter. The search time of

Goh’s scheme is O (n), where n is the

cardinality of the document collection.

Curtmola et al. [10] proposed two schemes

(SSE-1 and SSE-2) which achieve the optimal

search time. Their SSE-1 scheme is secure

against chosen-keyword attacks (CKA1) and

SSE-2 is secure against adaptive chosen-

keyword attacks (CKA2).

These early works are single keyword boolean

search schemes, which are very simple in terms

of functionality. Afterward, abundant works

have been proposed under different threat

models to achieve various search functionality,

such as single keyword search, similarity

search, multi-keyword boolean search, ranked

search, and multi-keyword ranked search, etc.

Multi-keyword boolean search allows the users

to input multiple query keywords to request

suitable documents. Among these works,

conjunctive keyword search schemes only

return the documents that contain all of the

query keywords. Disjunctive keyword search

schemes return all of the documents that

contain a subset of the query keywords.

Predicate search schemes are proposed to

support both conjunctive and disjunctive

search. All these multikeyword search schemes

retrieve search results based on the existence of

keywords, which cannot provide acceptable

result ranking functionality.

Ranked search can enable quick search of the

most relevant data. Sending back only the top-k

most relevant documents can effectively

decrease network traffic. Some early works

have realized the ranked search using order-

preserving techniques, but they are designed

only for single keyword search. Cao et al.

realized the first privacy-preserving multi-

keyword ranked search scheme, in which

documents and queries are represented as

vectors of dictionary size. With the “coordinate

matching”, the documents are ranked according

to the number of matched query keywords.

However, Cao et al.’s scheme does not

consider the importance of the different

keywords, and thus is not accurate enough. In

addition, the search efficiency of the scheme is

linear with the cardinality of document

collection. Sun et al. presented a secure multi-

keyword search scheme that supports

similarity-based ranking.

The authors constructed a searchable index tree

based on vector space model and adopted

cosine measure together with TF×IDF to

provide ranking results. Sun et al.’s search

algorithm achieves better-than-linear search

efficiency but results in precision loss. O¨

rencik et al. proposed a secure multi-keyword

search method which utilized local sensitive

hash (LSH) functions to cluster the similar

documents. The LSH algorithm is suitable for

similar search but cannot provide exact

ranking. In, Zhang et al. proposed a scheme to

deal with secure multi-keyword ranked search

in a multi-owner model. In this scheme,

different data owners use different secret keys

to encrypt their documents and keywords while

authorized data users can query without

knowing keys of these different data owners.

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 206

The authors proposed an “Additive Order

Preserving Function” to retrieve the most

relevant search results. However, these works

don’t support dynamic operations.

Practically, the data owner may need to update

the document collection after he upload the

collection to the cloud server. Thus, the SE

schemes are expected to support the insertion

and deletion of the documents. There are also

several dynamic searchable encryption

schemes. In the work of Song et al. [7], the

each document is considered as a sequence of

fixed length words, and is individually indexed.

This scheme supports straightforward update

operations but with low efficiency. Goh [8]

proposed a scheme to generate a sub-index

(Bloom filter) for every document based on

keywords. Then the dynamic operations can be

easily realized through updating of a Bloom

filter along with the corresponding document.

However, Goh’s scheme has linear search time

and suffers from false positives. In 2012,

Kamara et al. constructed an encrypted inverted

index that can handle dynamic data efficiently.

But, this scheme is very complex to implement.

Subsequently, as an improvement, Kamara et

al. proposed a new search scheme based on

tree-based index, which can handle dynamic

update on document data stored in leaf nodes.

However, their scheme is designed only for

single keyword Boolean search. In [32], Cash

et al. presented a data structure for

keyword/identity tuple named “TSet”. Then, a

document can be represented by a series of

independent T-Sets. Based on this structure,

Cash et al. proposed a dynamic searchable

encryption scheme. In their construction, newly

added tuples are stored in another database in

the cloud, and deleted tuples are recorded in a

revocation list. The final search result is

achieved through excluding tuples in the

revocation list from the ones retrieved from

original and newly added tuples. Yet, Cash et

al.’s dynamic search scheme doesn’t realize the

multi-keyword ranked search functionality.

III. PROPOSED SYSTEM

Fig. 1: PROPOSED SYSTEM

The system model in this paper involves three

different entities: data owner, data user and

cloud server, as illustrated in Fig. 1.

Data owner has a collection of documents F =

{f1; f2; :::; fn} that he wants to outsource to the

cloud server in encrypted form while still

keeping the capability to search on them for

effective utilization. In our scheme, the data

owner firstly builds a secure searchable tree

index I from document collection F, and then

generates an encrypted document collection C

for F. Afterwards, the data owner outsources

the encrypted collection C and the secure index

I to the cloud server, and securely distributes

the key information of trapdoor generation

(including keyword IDF values) and document

decryption to the authorized data users.

Besides, the data owner is responsible for the

update operation of his documents stored in the

cloud server. While updating, the data owner

generates the update information locally and

sends it to the server.

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 207

Data users are authorized ones to access the

documents of data owner. With t query

keywords, the authorized user can generate a

trapdoor TD according to search control

mechanisms to fetch k encrypted documents

from cloud server. Then, the data user can

decrypt the documents with the shared secret

key.

Cloud server stores the encrypted document

collection C and the encrypted searchable tree

index I for data owner. Upon receiving the

trapdoor TD from the data user, the cloud

server executes search over the index tree I, and

finally returns the corresponding collection of

top-k ranked encrypted documents. Besides,

upon receiving the update information from the

data owner, the server needs to update the

index I and document collection C according to

the received information.

The cloud server in the proposed scheme is

considered as “honest-but-curious”, which is

employed by lots of works on secure cloud data

search. Specifically, the cloud server honestly

and correctly executes instructions in the

designated protocol. Meanwhile, it is curious to

infer and analyze received data, which helps it

acquire additional information. Depending on

what information the cloud server knows, we

adopt the two threat models proposed by Cao et

al. we firstly describe the unencrypted

dynamic multi-keyword ranked search

(UDMRS) scheme which is constructed on the

basis of vector space model and KBB tree.

Based on the UDMRS scheme, two secure

search schemes (BDMRS and EDMRS

schemes) are constructed against two threat

models, respectively.

Index Construction of UDMRS Scheme

We have briefly introduced the KBB index tree

structure, which assists us in introducing the

index construction. In the process of index

construction, we first generate a tree node for

each document in the collection. These nodes

are the leaf nodes of the index tree. Then, the

internal tree nodes are generated based on these

leaf nodes. The formal construction process of

the index is presented in Algorithm 1.

Following are some notations for Algorithm 1.

Besides, the data structure of the tree node is

defined as ⟨ID;D; Pl; Pr; FID⟩, where the

unique identity ID for each tree node is

generated through the function GenID().

• CurrentNodeSet – The set of current

processing nodes which have no parents. If the

number of nodes is even, the cardinality of the

set is denoted as 2h(h ∈ Z+), else the

cardinality is denoted as (2h + 1).

• TempNodeSet – The set of the newly

generated nodes. In the index, if Du[i] ̸= 0 for

an internal node u, there is at least one path

from the node u to some leaf, which indicates a

document containing the keyword wi. In

addition, Du[i] always stores the biggest

normalized TF value of wi among its child

nodes. Thus, the possible largest relevance

score of its children can be easily estimated.

Search Process of UDMRS Scheme

The search process of the UDMRS

scheme is a recursive procedure upon the tree,

named as “Greedy Depthfirst Search (GDFS)”
algorithm. We construct a result list denoted as

RList, whose element is defined as ⟨RScore;

FID⟩. Here, the RScore is the relevance score

of the document fFID to the query, which is

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 208

calculated according to Formula (1). The RList

stores the k accessed documents with the

largest relevance scores to the query.

The elements of the list are ranked in

descending order according to the RScore, and

will be updated timely during the search

process. Following are some other notations,

and the GDFS algorithm is described in

Algorithm 2.

• RScore(Du;Q) – The function to calculate the

relevance score for query vector Q and index

vector Du stored in node u, which is defined in

Formula (1).

• kthscore – The smallest relevance score in

current RList, which is initialized as 0.

• hchild – The child node of a tree node with

higher relevance score.

• lchild – The child node of a tree node with

lower relevance score.

Since the possible largest relevance

score of documents rooted by the node u can be

predicted, only a part of the nodes in the tree

are accessed during the search process. Search

process with the document collection F = {fi|i =

1; :::; 6}, cardinality of the dictionary m = 4,

and query vector Q = (0; 0:92; 0; 0:38).

Algorithm 1 BuildIndexTree(F)

Input: the document collection F = {f1; f2; :::;

fn} with

the identifiers FID = {FID|FID = 1; 2; :::; n}.

Output: the index tree T

1: for each document fFID in F do

2: Construct a leaf node u for fFID, with u:ID =

GenID(), u:Pl = u:Pr = null, u:FID = FID, and

D[i] = TFfFID;wi for i = 1; :::;m;—

3: Insert u to CurrentNodeSet;

4: end for

5: while the number of nodes in

CurrentNodeSet is larger than 1 do

6: if the number of nodes in CurrentNodeSet is

even, i.e. 2h then

7: for each pair of nodes u′ and u′′ in

CurrentNodeSet do

8: Generate a parent node u for u′ and u′′, with

u:ID = GenID(), u:Pl = u′, u:Pr = u′′, u:FID =

0 and D[i] = max{u′:D[i]; u′′:D[i]} for each

i = 1; :::;m;

9: Insert u to TempNodeSet;

10: end for

11: else

12: for each pair of nodes u′ and u′′ of the

former (2h − 2) nodes in CurrentNodeSet do

13: Generate a parent node u for u′ and u′′;
14: Insert u to TempNodeSet;

15: end for

16: Create a parent node u1 for the (2h − 1)-th

and 2h-th node, and then create a parent node u

for u1 and the (2h + 1)-th node;

17: Insert u to TempNodeSet;

18: end if

19: Replace CurrentNodeSet with

TempNodeSet and then clear TempNodeSet;

20: end while

21: return the only node left in

CurrentNodeSet, namely, the root of index tree

T ;

Algorithm 2 GDFS(IndexTreeNode u)

1: if the node u is not a leaf node then

2: if RScore(Du;Q) > kthscore then

3: GDFS(u:hchild);

4: GDFS(u:lchild);

5: else

6: return

7: end if

8: else

9: if RScore(Du;Q) > kthscore then

10: Delete the element with the smallest

relevance score from RList;

11: Insert a new element ⟨ RScore(Du;Q);

u:FID and sort all the elements of RList;

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 209

12: end if

13: return

14: end if

IV. RESULTS

A. Efficiency

1) Trapdoor generation: The trapdoor

generation process contains three major steps:

stemming, the Bloom filter generation and the

encryption shows the total time of trapdoor

stemming and Bloom filter generation. The

generation time increased linearly with respect

to the number of the inserted keywords. As the

number of keywords grew, the trapdoor

generation time also increased.

2) Index construction: The index construction

time was the same as that of trapdoor

generation. Because the stemming and Bloom

filter generation were linear in the number of

the keywords, the index vector generation time

could be large, but it was just a one-time effort

shows that the encryption time is linear in the

size of files because the index structure we

constructed was a per file based index.

3) Search time: One important parameter that

affected the search time was the number of the

files n. Because our index was a per file based

index, the search time increased linearly in the

number of files, as illustrated

(a) The Bloom filter generation time of

trapdoor & a single index file; The stemming

time of keywords.

(b) The encryption time for all the indexes..

 (c) The search time of different size of the file

set. We set the query keyword number = 5;

 (d) The search time of different number of

query keyword. We set the size of document =

3000 we note that the number of the query

keywords had a small impact on the search

time. This is because regardless of the number

of keywords, all of them were mapped into a

query bloom vector. Hence, the search time

was independent of the number of query

keywords to a large extent. Another important

parameter is the length of the bloom filter. The

search efficiency of our scheme was the same

as that of the original scheme because both the

index and the trapdoor were built in the same

manner.

 B. Result Accuracy

We used precision to measure the result

accuracy. We denoted the true positive by tp

and the false positive by fp, and the precision

was equal to tp tp+fp. To generate the fuzzy

search, we randomly chose keywords and

modified it into a fuzzy keyword.

 1) Precision of Our Scheme: An important

parameter in our proposed scheme is the

number of the keywords in the query. For the

exact search, the precision decreased slightly

from 100% to 95% as the number of the

keywords increased from 1 to 10. Although the

accuracy of the fuzzy search was not greater

than that of the exact match, it was still produce

a high level of accuracy, greater than 85%.

From we note that the precision of the exact

match slightly decreased from 100% to 95% as

the number of the query keywords increased

from 1 to 10.

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 210

V. CONCLUSION

In this paper, a secure, efficient and dynamic

search scheme is proposed, which supports not

only the accurate multi-keyword ranked search

but also the dynamic deletion and insertion of

documents. We construct a special keyword

balanced binary tree as the index, and propose a

“Greedy Depth-first Search” algorithm to

obtain better efficiency than linear search. In

addition, the parallel search process can be

carried out to further reduce the time cost. The

security of the scheme is protected against two

threat models by using the secure kNN

algorithm. Experimental results demonstrate

the efficiency of our proposed scheme.

VI.REFERENCES

[1] K. Ren, C.Wang, Q.Wang et al., “Security

challenges for the public cloud,” IEEE Internet

Computing, vol. 16, no. 1, pp. 69–73, 2012.

[2] S. Kamara and K. Lauter, “Cryptographic

cloud storage,” in Financial Cryptography and

Data Security. Springer, 2010, pp. 136–149.

[3] C. Gentry, “A fully homomorphic

encryption scheme,” Ph.D. dissertation,

Stanford University, 2009.

[4] O. Goldreich and R. Ostrovsky, “Software

protection and simulation on oblivious rams,”
Journal of the ACM (JACM), vol. 43, no. 3, pp.

431–473, 1996.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky,

and G. Persiano, “Public key encryption with

keyword search,” in Advances in Cryptology-

Eurocrypt 2004. Springer, 2004, pp. 506–522.

[6] D. Boneh, E. Kushilevitz, R. Ostrovsky, and

W. E. Skeith III, “Public key encryption that

allows pir queries,” in Advances in Cryptology-

CRYPTO 2007. Springer, 2007, pp. 50–67.

[7] D. X. Song, D. Wagner, and A. Perrig,

“Practical techniques for searches on encrypted

data,” in Security and Privacy, 2000. S&P

2000. Proceedings. 2000 IEEE Symposium on.

IEEE, 2000, pp. 44– 55.

[8] E.-J. Goh et al., “Secure indexes.” IACR

Cryptology ePrint Archive, vol. 2003, p. 216,

2003.

[9] Y.-C. Chang and M. Mitzenmacher,

“Privacy preserving keyword searches on

remote encrypted data,” in Proceedings of the

Third international conference on Applied

Cryptography and Network Security. Springer-

Verlag, 2005, pp. 442–455.

[10] R. Curtmola, J. Garay, S. Kamara, and R.

Ostrovsky, “Searchable symmetric encryption:

improved definitions and efficient

constructions,” in Proceedings of the 13th ACM

conference on Computer and communications

security. ACM, 2006, pp. 79–88.

[11] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren,

and W. Lou, “Fuzzy keyword search over

encrypted data in cloud computing,” in

INFOCOM, 2010 Proceedings IEEE. IEEE,

2010, pp. 1–5.

[12] M. Kuzu, M. S. Islam, and M.

Kantarcioglu, “Efficient similarity search over

encrypted data,” in Data Engineering (ICDE),

2012 IEEE 28th International Conference on.

IEEE, 2012, pp. 1156–1167.

