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Abstract: The electrophysiology of the heart has made considerable strides in computer modelling. From the ion channels, 

through the distribution of a depolarization wave on a realistic geometry of the human heart, up to the potentials on the body 

surface and the ECG, a healthy heart may be recreated. Modeling cardiac disorders is a growing field of study. Using simulated 

depolarization and repolarization waves, this article summarizes the advances made in computing and analyzing the associated 

electrocardiogram (ECG). We first go through modelling of a healthy heart's P-wave, QRS complex, and T-wave. The 

modelling and corresponding ECGs of a number of significant disorders and arrhythmias are then identified, including 

ischemia and infarction, ectopic beats and extrasystoles, ventricular tachycardia, bundle branch blocks, atrial tachycardia, 

flutter and fibrillation, genetic disorders and channelopathies, electrolyte imbalance, and drug-induced changes. Lastly, we 

discuss how computer modelling may affect how an ECG is interpreted. Understanding the relationship between ECG 

characteristics and the underlying heart state and illness can be improved through computer modelling. It may open the door 

for a quantitative examination of the ECG and aid the cardiologist in pinpointing events or sick regions without invasive 

procedures.This study shows how to use a Genetic Algorithm (GA) to effectively identify and separate ECG wave components 

including P-waves, QRS-complexes, and T-waves in multi-channel ECG data. In order to provide some foundation for its use 

for component wave identification, the fundamental theory of GA is presented. There is a lot of promise in strengthening the 

connection between the ECG and heart computer modelling 

Keywords:  Computer Modeling, electrocardiogram  ,ECG  ,cardiac disease , Genetic Algorithm(GA)  

 

1   INTRODUCTION 

The impact of digital signal processing techniques promoted 

revolutionary advances in many fields of application e.g. 

biomedical engineering, speech communication, data 

communication, nuclear science and many others. 

Electrocardiogram (ECG) is one of the most important 

electrical signals in the field of medical science which has a 

great need to be processed before further analysis. 

Abnormalities of the heart can be detected using 

electrocardiograms (ECGs) that record the electrical activity 

of the heart. Cardiac diseases occur when disturbances are 

caused in the normal electrical events related to the basic 

process of automaticity, conduction and triggering 

mechanisms of the heart. ECG interpretation is a very 

important task performed in Coronary Care Units (CCUs) 

and ambulatory monitoring systems. If not well diagnosed in 

time, they represent a serious threat to the patient. Therefore, 

there is a need for early identification of these abnormal 

electrical activities of the heart. Both life threatening (e.g. 

ventricular fibrillation and atrial fibrillation) and not-so-life 

threatening premature ventricular contraction and atrial 

premature contraction can be detected with the help of the 

ECG 

This article reviews research aimed at building a bridge 

between computerized modeling of the electrophysiology of 

the human heart and the analysis of the electrocardiogram 

(ECG). Potential applications of computer modeling for 

better interpretation of the ECG are demonstrated and an 

outlook for further research is given.The research field of 
computerized modeling of the electrophysiology of the heart 

has reached a mature state. The healthy heart can be 

replicated in a computer model withvarious degrees of detail, 

starting with the ion channels and ending with the spread of 

adepolarization wave through the atria and the ventricles. 

Several diseases have been thefocus of this research but many 

open questions remain: modeling can only be as good asour 

basic understanding of the pathologies of the heart.On the 

other hand, after more than 100 years of ECG interpretation, 

the clinical knowledge about ECG and what it can tell us 

about cardiac diseases has reached an expert level. Most 

often, this knowledge is based on personal experience or 

empirical studies and only coarse attempts are made to relate 

a decisive feature in the ECG to its pathologicalorig in inside 

the heart. The classical heart vector is a valuable tool for 

understanding thegeneral shape of the ECG, but it is not good 

enough to follow details of the spatial spread of de- and 

repolarization.It is astounding that the number of articles 

where modeling of the heart is extended to the calculation of 

the ECG and where this is used for better ECG interpretation 

is limited. 

A standard ECG record is an important test for diagnosing all 

diseases, whether of ventricular or supraventricular origin. 

An ECG tracing is a series of waves that represent the 

electrical events of the various chambers and conduction 
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pathways within the heart. The electrical activity during the 

cardiac cycle is characterized by five separate waves of 

deflections designated as P, Q, R, S and T. A normal ECG is 

the ordered sequence of depolarization of the myocardial 

cells, i.e. the sequence of P-wave (atrial myocardial 

depolarization) and QRS-wave (ventricular myocardial 

depolarization) generation, at a regular rate of 60-100 beats 

per minute. When this sequence is disturbed, abnormal 

patterns in ECG occur. Analysis to diagnose diseases 

involves the accurate detection of P-waves and 

QRS-complexes with respect to time, with respect to each 

other and with respect to space.  

Computerized ECG interpretation to detect diseases (off-line 

or on-line) is a process of ECG data acquisition, waveform 

recognition, measurement of wave parameters and 

classification. A plethora of computer based techniques have 

been reported to detect the abnormalities of the heart. 

Different methods for feature detection based on digital 

signal processing of ECG waveform are available in 

literature. This chapter, therefore, deals with a discussion on 

analysis, interpretation and identification of wave complexes 

like P-wave, T-wave and QRS-complexes etc. A brief 

introduction of the CSE ECG database and outline of the 

thesis is also given. 

 

2 REVIEW OF LITERATURE  

The ECG tracings depicting arrhythmias were shown, for 

the first time by Einthoven, in the beginning of the last 

century, sometime around 1905-06 . However, identification 

of abnormal rhythm and associated parameters, in a recorded 

ECG, proved to be a complex task for cardiologists. As the 

invention of transistor led to the development of commercial 

computers, researchers working at MIT and Lincoln labs in 

1961 used the technology of the time to build a transistorized 

minicomputer called LINC that served as a very useful 

computational facility for biomedical applications . ECGs 

could be acquired from patients directly and displayed on its 

graphics display. Such developments had a great impact on 

research workers trying to monitor ECGs and evolve methods 

of automated rhythm analysis. Also, the discovery of Holter 

monitoring system in 1961, helped to record long-term ECGs 

that provided the cardiologists the ECGs, with episodes of 

randomly occurring rhythm abnormalities and sudden beat 

change. Around this time period of late 1950s and early 

1960s, several attempts were made to perform computerized 

ECG interpretation to identify arrhythmias and other cardiac 

disorders. 

The pioneering work to accomplish analysis of ECG, 

by a digital computer, was initiated in 1957 by Pipberger and 

his co-research worker. Pipberger’s group described digital 

conversion of ECGs for the first time at the American Heart 

Association’s 1959 Scientific Sessions and in Circulation in 

1960 . Results from a pilot project designed to demonstrate 

the feasibility of screening of normal and abnormal ECGs 

were reported by them in 1961. Stallman and Pipberger in 

1961 described a more comprehensive automatic ECG wave 

detection and measurement program. More and more 

publications ushering in, during this period, created a 

revolution in the design and development of computer based 

ECG analysis systems . Impeccable drive to develop computer 

based ECG analysis systems, led to the conceptualization of 

two basic approaches, for computerized interpretation of the 

ECG by early 1970s: 

(i) Decision logic approach based on the IF-THEN rule 

formalism that is easily followed by a human expert. It is 

basically a rule based expert system.  

(ii) Multivariate statistical pattern recognition method in 

which ECG interpretation as a pattern classification task 

is employed where decisions are made on the basis of the 

theory of probability.  

 In the last decade, the development has shifted to 

industry. Computers can assist a cardiologist in the task of 

ECG monitoring and interpretation. For example in cardiac 

intensive care units (CICU), ECGs of several patients must 

be monitored continuously to detect any life-threatening 

abnormality that may occur. Since cardiologists are unlikely 

to be available to monitor the ECGs of all the patients round 

the clock, automated monitors programmed to detect 

abnormal heart rhythms are needed. Over the past several 

years, the computerized ECG monitors that provide complete 

12-lead diagnostic quality ECG recordings and 

interpretations have become common. Computerized ECG 

monitoring and analysis are now carried out with bedside 

monitors, mobile carts equipped with ECG amplifiers and 

microcomputers and portable ECG recorders hooked up via 

telephone networks. State-of-the art systems are based on 

multiple microcomputers, which run, sophisticated 

arrhythmia analysis software and are connected to central 

computer facilities where they share patient record and 

database. In the past four decades, numerous computer 

programs have been developed for the automatic 

interpretation of ECG. However, methods and independent 

databases to test the reliability of such programs are still 

scare. Each ECG programs has different principle with 

respect to analysis, for example, some measure single beats, 

where as others analyze average beats. Earlier, there were no 

standards in this field. There were no common definitions of 

waves, no standards for measurement or diagnostic 

classification and no uniform terminology for reporting, 

transmission and processing of data. This has created a 

situation whereby large differences in results of 

measurements by different computer programs have 

hampered the exchange of diagnostic criteria and 

interpretation results . In addition, more and more 
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microcomputer-based interpretative ECG machines are being 

put on the market without any prior independent validation. 

In order to overcome some of these problems, a concrete 

action was initiated by European Community (EC) in June 

1980 striving towards ‘Common Standards for Quantitative 

Electrocardiography’ (CSE)  

 The prompt and adequate detection of abnormal 

cardiac conditions by computer assisted long-term 

monitoring system depends greatly on the reliability of the 

implemented automatic ECG analysis technique. Although 

diagnostic accuracy of computer programs is tending to reach 

a plateau, there is no doubt that many years hence, it will still 

be possible to report on recent developments in the programs. 

In all programs, there is every possibility that the work will 

always be enhanced, modifications for improvements be 

made and the new techniques like Genetic Algorithm (GA) 

be introduced for better results

 

          Table 1. Literature survey of research about modeling of the heart together with the correspondingECG. 

Topic Modelling Challenge References  

healthy heart—QRS modeling the Purkinje tree 
[1–9] 

 

healthy heart—T-wave 
modeling heterogeneity of repo- 

larization 

 

[10–13] 

healthy heart—P-wave 
modeling sinus node excitation 

and pathways from right to left 

atrium, anatomical variability 

[14–22] 

ischemia and infarction 
modeling the effect of hyperkalemia, 

acidosis, hypoxia and 

cell-to-cell uncoupling 

[23–30] 

ventricular ectopic 

beats 

localization with 12-lead ECG [31–34] 

ventricular tachycardia 
localization of exit points with 

12-lead ECG 

[29,35] 

cardiomyopathy 
modeling typical changes of 

QRS- and T-wave 

[36-53] 

 

The literature survey yielded several articles that do not focus on a specific disease butrather deal with the general concept of 

calculating the ECG from computer models of the  heart. Lyon et al. gave an outline of a computational pipeline, listed 

examples of modeling diseases together with the ECG and showed up several applications of modeling in ECGinterpretation . 

Potse suggested a fast method for realistic ECG simulation without oversimplifying the torso model by using a lead-field 
approach . Building upon this approach, Pezzuto et al. found an even faster method that allows for implementation ona 

general-purpose graphic processing unit (GPGPU) . Keller et al. investigated the influence of tissue conductivities on the 
resulting ECG Schuler et al. found a way to down sample the fine grid necessary for calculating the spread of depolarization for 

theforward calculation of the ECG—further reducing calculation time. Neic et al. developed are action eikonal algorithm that 

simulates the spread of depolarization very fast and stilldelivers realistic ECGs  .Calculation times for computing the spread of 

depolarization and repolarization,the lead field matrix and the body surface potentials including the ECG strongly depend 
onthe methods employed: highly detailed cell models versus simplified phenomenologicalmodels, high versus low spatial 
resolutions, etc. They can range from one day down to onesecond. As an example, the calculation times of the P-waves shown 
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in Figure1were 27 h for the full bidomain model and the Courte manche cell model, 1 h and 24 min for a pseudo bido main 

model and 40 min for a monodomain simulation (heart mesh with 4.7 million elements and 920 k nodes, desktop computer 

with 12 cores at 1.4 GHz). Fast calculation times are important for the researcher aiming at the identification of new features in 
the ECG, for creating a training dataset for machine learning and for personalization of a heart model. They are not relevant 

any more if, for example, a machine learning algorithm is finally used in clinics. 

 

Figure 1. Simulated P-waves of the 12-lead ECG with various atrial shapes, several orientations of the atria inside the torso 

and a variety of body shapes. The colors represent the total atrial volume inblue, the torso size in red and the orientation angle 

around the medial-lateral axis in orange  

Elimination of Noise from the ECG Signal 

 ECG noise is ubiquitous; it is present in operating rooms, in 

physiological laboratories, and in patient wards. Noise from 

power line interference (50 or 60 Hz), EMG from muscles, 

motion artifact from the electrode and skin contact interface, 

and multi-frequency noise due to electronic equipment in the 

surroundings of the patient are the various types of 

interference that contaminate an ECG signal. Elimination of 

this ECG noise is, therefore, the first step in ECG analysis 

and interpretation. However, removal of multiple frequencies 

is not a simple process. Suppression of noise usually causes 

ECG signal distortion leading to inaccurate interpretation. In 

spite of this stringent condition that imposes a trade-off 

between obtaining a noise free ECG, and accuracy of ECG 

analysis and classification, researchers have developed a 

number of techniques to extract useful diagnostic features 

from ECG signals contaminated by different types of 

interference. Some of these methods require pre-processing 

for noise elimination prior to feature extraction, while some 

detect the ECG characteristic in presence of noise.  

 In 1995, Ider et al. proposed a technique for removal of power 

line interference from signal averaged ECGs. The method 

was referred to as the Line Interference Subtraction filter 

(LIS) and was based on the subtraction of a scaled and shifted 

version of a common mode line interference signal, 

simultaneously recorded, from the ECG. To suppress the 

transient response of IIR notch filter, used for eliminating AC 

interference in ECG, Pei and Tseng, in 1995 , presented a 

technique based on the vector projection of the first few 

samples of the input signal (responsible for transient 

behavior). The method performed better than the 

conventional notch filter with arbitrary initial condition, by 

providing better initial values for the IIR notch filter output. 

Sahambi et al. , used wavelet transform to obtain multi-scale 

analysis for timing characterization of the ECG. The 

technique helped to detect the QRS-complex, P and T-waves 

with positive and negative polarity, PR, QT and  

ST-segments in the presence of noise, without preprocessing 

the signal. Baseline drift, power line interference, and a 

combination of both were the interference considered. The 

wavelet employed was the first derivative of a smoothing 
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function (Gaussian function), that reduced errors, in ECG 

timing interval characterization, in the presence of noise. The 

technique was tested using records 106 and 202 of the 

MIT/BIH database. Ma et al., in 1999 , presented a fast 

recursive least squares (FRLS) adaptive notch filter (ANF) 

for removal of sinusoidal interference from recorded 

biomedical signals, including ECGs contaminated by 50/60 

Hz power line interference. Rakotomamonjy   et al.  

described a new wavelet-based filtering method to improve 

the signal-to-noise ratio of the signal averaged ECGs.  

 Removal of Baseline Wander from the ECG Signal 

 The iso-electrical period in electro-cardiology is the 

reference against which the instantaneous magnitudes of 

ECG signal components are determined. This period is not a 

clearly defined portion of the ECG, especially when the heart 

rate is high enough, making this period too short to be used or 

not present at all. Ideally, the reference level against which 

the magnitude of the recorded ECG is to be measured should 

represent zero activity of the signal source. Unfortunately, in 

most cases the zero level of ECG signal deviates from zero 

voltage, and it is generally difficult to determine its exact 

value [34]. However, the idea of the isoelectric period of the 

recorded ECG being taken as the reference level is not 

sufficient, and, that the isoelectrical period in the ECG 

denotes the true level of zero heart action does not produce 

desired results. Difficulty in determining the exact instant 

when ventricular activity ends, the end of the T-wave 

extending into the assumed isoelectrical period, high heart 

rate, distortion of the signal by EMG, respiratory activity 

creating baseline wander, render discrimination between the 

tail of the T-wave and the onset of isoelectrical period quite 

problematic and deformation of the ECG signal during the 

assumed isoelectrical period by ischemic currents flowing 

through the heart create numerous difficulties in determining 

the exact baseline in an ECG to accomplish feature 

extraction. As per CSE Working Party’s updated AHA 

recommendations , the ST- segment, the T-wave and the 

P-wave, should all be measured with respect to the isoelectric 

part of the tracing before the P-wave. CSE Working Party  

recommended that  a uniform horizontal baseline should be 

determined in an interval before QRS-onset for all QRS and 

ST-T measurements in such a way so that problems arising 

due to the earlier AHA recommendations, in which a 

discontinuity is implied in the baseline immediately  after the 

J point, could be avoided.  

Identification of QRS-Complexes 

ECG is characterized by a recurrent wave sequence 

of P, QRS and T-wave associated with each beat. The 

QRS-complex is the most striking waveform, caused by 

ventricular depolarization of the human heart. Once the 

positions of the QRS-complexes are found, the locations of 

other components of ECG like P-wave, T-wave and     

ST-segment, etc. are found relative to the position of QRS, in 

order to analyze the complete cardiac period. In this sense, 

QRS-detection provides the fundamental basis for almost all 

automated ECG analysis algorithms. The QRS-wave is used 

as the basis for faithful heart disease diagnosis, for carrying 

out studies on HRV and for analysis of arrhythmia. The rapid 

development of powerful computers promoted the 

widespread application of software for QRS-detection in 

cardiological devices. The QRS-detection algorithms 

developed so far can be broadly classified into seven main 

categories. 

Identification Based on Heuristic Approach 

The heuristic methods are based on the temporal 

characteristics of the signal such as its amplitude, first and 

second derivative. These methods are noise sensitive but 

simple to implement. Pan and Tompkins  have developed a 

real-time algorithm for the detection of QRS-complexes of 

the ECG signal. It reliably recognizes the QRS-complexes 

based upon digital analysis of amplitude, slope and width. 

Fraden and Neuman  used amplitude and first derivative to 

detect QRS-complex, Fancott and Wong  and Cox et al. used 

first derivative. When it exceeds threshold it detects 

QRS-complex. Murthy and Rangaraj used transformed first 

order derivative of amplitude for detection of QRS-complex. 

Ahlstrom and Tompkins  used both first and second order 

derivative for detection of QRS-complex. Engelse and 

Zeelenberg used the sum of rectified smoothed first 

derivative and rectified second derivative to set primary and 

secondary thresholds. If the sum of first and second 

derivative exceeds secondary threshold, a QRS-complex is 

detected but this algorithm is noise sensitive. Ferdi et al.  

used fractional digital differentiation for the detection of   

R-wave in the ECG signal. Arzeno et al. made quantitative 

analysis of three   QRS-detection algorithms by applying 

different transforms on the differentiated ECG signal (first 

derivative). The three transforms used are the Hilbert 

transform, the squaring function and a second discrete 

derivative stage. The Hilbert transform and the squaring 

function performs better as compare to the second derivative.  

Identification Based on Mathematical Transformations 

In this category, various mathematical 

transformations, namely Fourier transform, cosine transform, 

differentiator transform, Hilbert transform and wavelet 

transform are used for the QRS-detection. The use of these 

transforms on ECG signal helps to characterize the signal into 

energy, slope, or spike spectra and thereafter, the temporal 

locations are detected with the help of decision rules like 

thresholds of amplitude, slope, or duration. The non-linear 

transformation of the signal is done by Weinsner et al. , 

Fancott and Wong  and Murthy and Rangaraj. The 

transformation results in a single positive peak with no 

ripples for each ECG cycle with maximum value occurring at 



Vol09 Issue08, Aug 2020                                           ISSN 2456 – 5083 Page 177 

 

 

the end of the QRS-complex. The maximum value is used for 

QRS-detection. Murthy and Prasad  proposed a solution to 

the fundamental problem of ECG analysis, viz. delineation of 

the signal into its component waves. The discrete cosine 

transform of a bell shaped biphasic function is approximated 

mathematically by a system function with two poles and two 

zeros. A one-to-one relation between the pole pattern in the 

z-plane and the component wave pattern in the time signal is 

established. Ghaffari et al.  proposed a mathematical based      

QRS-detector using continuous wavelet transform.  Benitez 

et al.  developed an algorithm for the detection of 

QRS-complexes using the first differential of the ECG signal 

and its Hilbert transformed data to locate the R-wave peaks in 

the ECG waveform. The differentiation of R-waves from 

large and peaky P and T-waves is achieved using this 

algorithm. 

There are some algorithms, which work on the use 

of mathematical approaches like mixed mathematical basis 

function, mathematical models, mathematical morphology, 

spatial velocity function, entropy concept and averaging 

techniques. Mathematical models are developed by 

considering the QRS-segment as pulse shaped waveform and 

its variables as the number of peaks, arrival time, amplitude 

and width of various complexes . The mixed mathematical 

functions like Gaussian, exponential and straight line have 

been used to represent the composite ECG signal.   Sornmo et 

al. have considered the mathematical model for the 

occurrence of pulse shaped waveforms corrupted with 

colored Gaussian noise. The number of waveforms, the 

arrival times, amplitudes and widths are regarded as 

unknown variables. Adaptivity of the detector is gained by 

utilizing past as well as future properties of signal in 

determining thresholds for QRS-acceptance. Naima have 

presented two approaches for feature extraction of the ECG 

signal for computer-aided analysis. The first approach is 

based on mixed mathematical functions and second one on 

spline functions. These methods also identify and separate P, 

Q, R, S and                 T-segments. These methods are suitable 

for memory based manipulations and mapping type 

microcomputer based biomedical instruments. Park et al 

presented an algorithm detecting the presence of a fetal 

QRS-complex. It computes the averaged magnitude of the 

difference between the fetal ECG signal and the reference 

signal to detect the fetal QRS-event. Trahanias  suggested an 

approach based on mathematical morphology for 

QRS-detection.  

Identification Based on Various Pattern 

Recognition Techniques 

This category of algorithms includes pattern 

recognition techniques for the detection of QRS-complex. In 

syntactic approach of ECG pattern recognition, the ECG 

signal is first reduced into a set of elementary patterns like 

peaks, durations, slopes and inter-wave segments and 

thereafter rule based grammar is used. The signal is 

represented as a composite entity of peaks, durations, slopes 

and inter-wave segments. These patterns are then used to 

detect the QRS-complexes in the ECG signal. The methods 

of this category are time consuming and require inference 

grammar in each step of execution for QRS-detection. Even 

then the motivation for using syntactic approach resides in 

the fact that human inspection of ECG waveforms is firstly an 

extraction of structural and qualitative information. Once this 

information has been obtained and some typical forms (like a 

QRS-complex) have been recognized, the numerical values 

of the durations and amplitudes useful for diagnosis are 

measured. 

   Mehta et al.  used pattern recognition technique 

for the detection of    QRS-complexes in the ECG signal. Lin 

and Chang , Pietka , Udapa and Murthy used synaptic method 

for QRS-detection. In this, a set of priitive are decided which 

should provide adequate description of ECG. Then parameter 

such as slope and height are determined. This method is 

based on the assumption that the ECG is composed of peaks 

and segments, which are primitives that constitute the ECG. 

Peaks are combined to form complex. The complex and 

segments are combined to form cardiac cycles. Gustavo et al.  

used the syntactic method to extract the time evolution of the 

rhythm using the energy of ECG derivatives and their coding 

by a look up table method.  Trahanias and Skordalakis  have 

reported a bottom-up approach to the recognition of ECG 

waveforms. This approach is based on the assumption that 

ECG waveforms are composite entities that can be 

decomposed into other simpler entities, further into other 

simpler ones and so on, until peak patterns and segment 

patterns are obtained. After recognition of these primitive 

patterns, recognition of the ECG patterns using bottom-up 

procedure has been carried out. In their other paper, solutions 

to the sub-problems of primitive pattern selection, primitive 

pattern extraction, linguistic representation and pattern 

grammar formulation are reported. They observed that the 

primitive pattern extractor does not always accurately 

delineate the boundaries of the peak patterns. This type of 

error is propagated in the next stages and is responsible for 

many inaccurate results. Looking to the complex structure 

with infinite morphological variability, this approach faces 

difficulty in QRS-detection.  

Identification Based on Artificial Neural 

Networks and Fuzzy Logic 

An improvement over the methods discussed above, 

the concept of adaptiveness has been introduced in the 

techniques used for QRS-detection. Adaptive thresholds for 

signal amplitude, slope, entropy and durations, adaptive 

matched filtering, adaptive estimation of QRS-segment 

features by the Hermite model, neural network based 
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adaptive matched filtering and adaptive template buildings 

are some of the techniques in this category. In these 

techniques, an algorithm configures itself to a unique         

QRS-segment of a patient during an initial stage of learning. 

Singhvi  used adaptive threshold on the slope of the ECG 

signal for the detection of   QRS-complexes. Paliwal  applied 

adaptive threshold on the entropy of ECG signal for 

localization of QRS-complexes. Recently, Chouhan and 

Mehtaproposed a technique of adaptive quantized threshold 

for the detection of QRS-complexes in single-lead 

electrocardiogram. This adaptability approach enhances the 

QRS-detection rate by a considerable extent and reduces the 

percentage of false detections, but at the same time, increases 

the computations as it involves learning phase (determination 

of adaptive model parameters) and repetitive calculations to 

optimize the threshold limits for amplitude, slope and 

durations. 

Identification of P and T-waves in ECG Signal 

 The detection of P and T-wave is more difficult than 

QRS-complex detection for several reasons including low 

amplitudes, low signal-to-noise ratio, amplitude and 

morphological variability and possible overlapping of the 

P-wave with T-wave or the QRS-complex in case of high 

heart beat rate. The P-wave may be even absent from some 

ECG recordings. Over the last few years, the P and T-wave 

detection and delineation problem has been addressed using 

different approaches.  

Rey et al.  developed an algorithm for the detection 

of P-waves and tested on seven patients with various 

arrhythmias. Hengeveld and Bemmel have presented two 

algorithms for the detection of P-waves in ECG’s. The first 

algorithm makes use of the stability of PR-intervals for the 

detection of the coupled P-waves and the second one, for the 

detection of non-coupled P-waves computes the    

cross-correlation between a ternary detection signal, derived 

form the original ECG and a template, obtained from a 

reference population of P-waves. The methods have been 

tested on two sets of recordings, one with complicated 

rhythms and wave shapes and the other with material of 

average clinical patients. Brodda et al. proposed a procedure 

for searching a P-wave in the corrected orthogonal 

electrocardiogram (VCG) on the basis of VCG representation 

in spherical coordinates. Reddy et al.  done a preliminary 

study for the detection of P-waves in resting ECG in which 

median      QRS-ST-segments were subtracted form the 

rhythm data and residual in the    QRS-regions was zeroed. 

Resulting signals were low passed filtered, first and second 

differenced and combined into a detection function, which 

was used to detect and delineate P-waves. Fokapu and Girard  

proposed an algorithm for P-wave detection which uses the 

instantaneous frequency of ECG analytic signal. Zhu 

proposed an algorithm for the detection of P-waves based on 

an adaptive QRS-T-cancellation technique. Sabry-Rizk et 

al.reported a strategy for P-wave detection utilizing 

non-linearly synthesized ECG components and their 

enhanced pseudo-spectral resonances. Sovilj et al. developed 

a real time P-wave detector based on wavelet analysis. 

Senhadji et al.  proposed a method for the detection of 

P-waves after beat-to-beat QRS-T cancellation based on 

wavelet transform. 

Vila et al. have presented a T-wave detection and 

shape classification algorithm using a mathematical signal 

modeling stage prior to the detection and characterization of 

the T-wave by standard geometric technique. Mehta et al. 

developed fuzzy theory based pattern recognition technique 

for correct identification of P and T-waves. Freeman and 

Singh developed an algorithm for the detection of  P-waves in 

ambulatory ECG. Sivannarayana and Reddy used 

bio-orthogonal wavelet transform for ECG parameters 

estimation. Stamkopoulos et al. developed wave 

segmentation technique using non-stationary properties of 

ECG. Clavier et al. have performed automatic P-wave 

analysis of patients prone to atrial fibrillation. Vasquez et al. 

applied Wiener filtering using an artificial neural network for 

the enhancement of atrial activity. Domider et al. developed 

an approach to the P-wave detection and classification based 

upon application of wavelet neural network Le et al. used 

spatial velocity to detect P and T-waves. Murthy and 

Niranjan  used discrete Fourier transform where as Murthy 

and Prasad used discrete cosine transform. Thakor and Zhu 

developed adaptive filters for delineation of P-waves. 

Trahanias and Skordalaki used attributed grammar for the 

detection of P-waves and T-waves. Mehta and Lingayat 

applied Support Vector Machine as a classifier for the 

detection and delineation of P and T-waves in simultaneously 

recorded 12-lead ECG. 

Modeling Diseases and the Corresponding ECG 

Loewe at al. gave an outline of how computer modelling can 

support comprehension of cardiac ischemia and discussed the 

link to the corresponding ECG . Figure2 shows several 

examples of ischemic regions together with the 

corresponding ECG. The parameters of the ten Tusscher–
Panfilov cell model which reflect the degree and temporal 

stage ofthe occlusion were summarized by Wilhelms et al. . 

They considered the cellular effects due to hyperkalemia, 

acidosis and hypoxia as well as due to cellular 

uncoupling.After clarifying the origin of ST-segment 

elevation (and depression), they also demonstrated how 

several ischemic scenarios will not show any ST-segment 

change . Thus, they were able to explain the large group of 

non-ST-segment elevation myocardial infarctions(NSTEMI). 

Potyagaylo et al. showed that these scenarios are not only 

electrically but also magnetically “silent” . Loewe at alusing 

computer modelling investigated whether additional 
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electrodes, optimized electrode placement or improved 

analysis of theST segment could lead to better diagnosis of 

patients with acute ischemia. They suggestthe deviation from 

baseline at the K-point as being superior to J-point analysis 

 
Figure 2. Examples of ischemic regions with varying transmural extent due to occlusion of the leftanterior descending 

coronary artery and the related levels of hyperkalemia, acidosis, and hypoxia (A).ECG lead V4 for ischemia of varying 

transmural extent in temporal stage 2 (B) and varying duration ofa transmural ischemia (C). Ventricular transmembrane 

voltage and body surface potential distribution during the action potential plateau (t = 200 ms) for ischemia of varying 

transmural extent in stage 2 (D). 

          

  

Computerized ECG interpretation to detect arrhythmias 

(off-line or on-line) is a process of ECG data acquisition, 

waveform recognition, measurement of wave parameters and 

rhythm classification. Substantial progress has been made 

over the years in improvising techniques for signal 

conditioning, extraction of relevant wave parameters and 

rhythm classification. However, many problems and issues, 

especially those related to detection of long P and T peaks 

and reliable analysis of multiple arrhythmic events etc., still 

need to be addressed in a more comprehensive manner to 

brighten the prospect of commercial automated arrhythmia 

analysis in mass health care centers.  

From the literature survey it is observed that besides 

conventional computing techniques such as FFT, DFT and 

wavelet transforms etc., frequent usage of sophisticated 

artificial intelligent tools such as expert systems has also been 

reported. Knowledge-based expert systems that are IF-THEN 

rule based systems form a major part of clinical decision 

support systems in practice, since the decision-making 

process in such systems is easily followed by a cardiologist. 

Non-knowledge-based expert systems that are not rule based 

employ hybrid AI techniques such as fuzzy-neural networks 

are fast and efficient, further research is needed to make them 

more reliable in clinical diagnostics. Also, these systems 

provide little insight into how decisions are made or what is 

the declarative knowledge structure, thereby creating 

difficulties for cardiologists to understand such ‘black-box’ 
systems, and hence eliciting their disapproval for 

implementation of such systems in clinical situations 

3 Conclusion 

This research article demonstrates an application of 

Genetic Algorithm (GA) for the effective automatic 

identification and delineation of ECG wave components such 

as P-wave, QRS-complexes, and T-waves in multi-channel 

ECG recordings. The basic theory of GA is given in order to 

give some basis for its application for the component wave 

detection.Establishing a stronger link between computer 

modelling of the heart and the ECG holds great potential. To 

consequently add at least the calculation of endocardial 

electrograms and compare with clinical data from the 

electrophysiology lab would add more evidence to 

computerized modelling of the heart. Moreover, the forward 

calculation of the ECG on the body surface is possible and 

allows for a comparison with the clinical ECG that is most 

often available. It is a valuable test of the consistency of the 

modelling approach and can lead to new insights about the 

relation between electrophysiological phenomena in the heart 

and the corresponding ECG . Likewise, if new (and most 

often computerized) methods of ECG analysis are proposed, 

it would be important to make the results explainable by 

mechanistically underpinning the results, e.g., by backing up 

the hypotheses with state-of-the-art computer simulations. In 

many cases, a “rule of thumb” using the classical heart vector 

for an explanationcan be misleading. If a feature in the ECG 

can be clearly linked to a source pattern on the heart, the 

diagnostic value of ECG can be increased.It might be 

possible to construct personalized models of the heart from 

the 12–lead ECG . However, often there will be ambiguities 

and spatially higher resolved BSPMs orintracardiac 

electrograms will be needed. There are also other options for 
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personalization., measuring the ECG of a patient for one or 

two electrolytes or drug concentrations and using computer 

modelling to predict (interpolate) intermediate values can 

enable a quantitative interpretation of the ECG.For making 

general conclusions about features in the ECG that point to 

specific diseases, the analysis of computer simulations with 

just one geometry of heart and torsowill not be sufficient in 
the long run. In summary, bridging the gap between 

computerized modeling of the heart and ECG analysis (as 

well as intracardiac electrograms) holds great potential to 

lead to better comprehension of cardiac diseases, better 

diagnosis and optimized therapy planning. 
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