

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2022 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 26th Jan 2022. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-11&issue=Issue 01

10.48047/IJIEMR/V11/ISSUE 01/37

TITLE: THE STUDY OF DEVELOPMENT OF RELIABILITY METRICS

Volume 11, ISSUE 01, Pages: 232-243

Paper Authors PRAVEEN KUMAR, DR. KAILASH PATIDAR

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

http://www.ijiemr.org/

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 232

 THE STUDY OF DEVELOPMENT OF RELIABILITY

METRICS
PRAVEEN KUMAR

Research Scholar, Dr. A.P.J. Abdul Kalam University, Indore

DR. KAILASH PATIDAR

Research Supervisor, Dr. A.P.J. Abdul Kalam University, Indore

ABSTRACT

In a CBSD environment, component selection is crucial. The collection has a wide

selection of potential parts. Analyzing several software metrics and pinpointing their

respective sub-factors is the focus of this research.

KEYWORDS: structural, approach, the object-oriented, complexity, dependability.

INTRODUCTION

Quality metrics, such as those assessed by object-oriented software metrics, have a direct

impact on a software product's performance, size, complexity, and reliability. It is

impossible to overstate the importance of software metrics when comparing the results of

various methods for creating software and their implications for continuing software

maintenance. In modern software engineering environments, software metrics are more

important. A metric in software development is an objective, quantifiable evaluation of

some aspect of the project. For example, if a software is being developed in-house, the

members of the development team can use a variety of metrics to assess the nature of any

problems they're having with the creation of the software and the progress of any related

projects, all within the context of the CBSD, and all of which can be used to perform a

very significant evaluation. To make better forecasts and finish the right solution, software

evaluation metrics are helpful.

There are two main schools of thought when it comes to developing new software

programs: the structural approach and the object-oriented approach. The development of

complex or large software applications is best done using an object-oriented approach as

opposed to a structured one. There are numerous advantages to using an object-oriented

approach, but there are also significant drawbacks, particularly in the areas of security and

privacy, that must be addressed. The cost of developing a new information-based legacy

system from scratch is more than that of developing a system based on the idea of reuse

rather than coding each individual feature from scratch. Since then, a new methodology

has emerged called component-based development [CBD], which is predicated on the idea

of reusability. Narasimhan investigated comparing the three sets of metrics in a methodical

manner.

There are a variety of metrics and models that may be used to assess the complexity,

reliability, and maintainability of the CBS. Nevertheless, a different approach is necessary

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 233

when both OSS and In-House components are involved. It is important to evaluate the

complexity and reliability of a part before incorporating it into a larger system. This study

is the initial stage in confirming or estimating the complexity of the component using the

given method and the reusable process approach. The software complexity and reliability

metrics of component-based systems have been the subject of several studies, but the

difficulties of putting CBS into practice have received less attention. The term "coupling"

refers to the degree of interdependence between two software parts. Having a better

understanding of software dependencies may help improve program readability,

maintainability, and usability. As far as we can tell, there is a dearth of research on the use

of a properly adapted complexity measure in CBSE to enhance system dependability via

the use of the concept of cohesiveness. Component complexity measurements in the

context of CBSD are still lacking, with most measurements being extrapolations from

previous methodologies.

There is a lot written about software metrics, but CBSE measurements are required to

make up for some of the deficiencies of the more common metrics. The chidamber and

Kemerer debuted the first suite in 1991. Nevertheless, further improvements to these

measures were achieved by researchers Li and Henry in 1993. Since then, various new

measures, including as CPC, CSC, CDC, DSC, NOH, and ANA, have evolved, all of

which are based on design and connectivity between components. In 2003, Martin

developed a package-based metric for measuring program complexity.

The following are some of the sources of motivation for the proposed research, all of

which point to the need of using a refined metric for component selection in CBSD.

The static source code of the component has only been subjected to a small subset of the

metrics available in CBSE to evaluate its reliability.

It is crucial to establish and develop new static software metrics in order to measure the

dependability of components in CBSE. The urgency of our situation is motivating us to

take this action.

Although several metrics exist for gauging the complexity of a component-based system,

none of them can be used for optimal component selection on the basis of the common

hierarchical relationship across packages, classes, and methods.

Most current metrics are based on object-oriented notions like inheritance, polymorphism,

and constructor, but they don't account for the packages between classes and methods

when calculating coupling and cohesion.

LITERATURE AND REVIEW

Luis F. Mendivelso et.al (2018) Software engineers consider application maintenance a

crucial responsibility. There is a high cost since the user must read and understand the

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 234

source code because there is typically no existing abstraction or documentation to help in

this activity. Extracting architectural views of software from source code is the goal of a

number of commercial and research tools. 1) their dependency on the language/technology

upon which the application is constructed, and (ii) their availability of pre-defined

perspectives which are too sophisticated to customize to particular needs for software

comprehension, are the key downsides of such tools. In this paper, we provide a

Technology-neutral approach flexible enough to enable annotated architectural viewpoint

construction by programmers. These viewpoints provide a unified picture of architectural

elements whose visual representation corresponds to software measurements. Working

side-by-side with commercial customers that have an immediate need to update their old

code is where we gained our experience in Oracle Forms, Java EE, and Ruby on Rails. In

the following, we describe the specific applications of our concept in various projects and

compare the results to those obtained by following industry norms.

Durga Patel, Pallavi (2016) A high degree of software dependability is essential to ensure

the 24/7 availability of mission-critical business applications. For something to be reliable,

there must be a reasonable chance of it happening. The program must be mistake free and

100% reliable. Errors in the code make the product completely untrustworthy. The need

for complicated systems is rising quickly. Early in the 1970s, software became an issue for

businesses because of the steadily rising cost of software compared to hardware during

both the setup and maintenance phases. A critical component of any instrument designed

to convert a discrete set of inputs into a discrete set of output is its software. Due to the

human nature of its creators, software is prone to having flaws. Hence, it's crucial to have a

method of monitoring software reliability in order to spot any signs of failure. Quite a bit

of research has been done in the area of predicting how reliable software will be.

Yan-Fu Li et al (2021) Both energy (through power grids) and information (by

telecommunications networks) are transported via networks. Both of these buildings

provide essential functions for human civilization. In this research, we look at the

evolution of dependability measures for both power grids and telecommunications

networks. The primary goal of this analysis is to encourage and facilitate the development

of dependability indicators for communication networks with respect to the power grid.

We divide the metrics of the electricity grid into those of distribution reliability and those

of generation/transmission reliability, and we divide those of the telecommunications

networks into those of connection, performance, and status. Then, we show how the two

systems' dependability measures are different in different scenarios and talk about why that

matters. Finally, we suggest several avenues for further exploration and improvement in

the area of dependability measures for telecommunications networks.

Ali Maatouk et al (2023) In this work, we examine the relationship between network

dependability and a utility function that changes over time to represent the system's actual

performance. The system suffers a utility loss when an anomaly arises, the magnitude of

which is proportional to the length of time the abnormality persists. Taking into account

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 235

exponential anomalies' inter-arrival periods and generic distributions of maintenance

length, we examine the long-term average utility loss. We demonstrate that there is a

simple form to which the estimated utility loss converges in probability. We then

generalize our convergence findings to include additional families of non-periodic utility

functions and a wider range of inter-arrival time distributions for anomalies. Data from a

cellular network with over 20,000 subscribers and 660 base stations is used to back up our

claims. We show that user traffic exhibits a quasi-periodic pattern, and we show that the

intervals between anomaly occurrences follow an exponential distribution, enabling us to

apply our findings and provide dependability ratings for the network. Moreover, we

explore the influence of non-stationarity on our convergence findings, the interaction

between the various network characteristics, and the convergence pace of the long-term

average utility loss.

Gurpreet Kaur, Kailash. bahl (2014) The purpose of this work is to investigate the

measures of software dependability. One of the most crucial but elusive qualities of any

piece of software is its reliability. "Software Reliability is defined as the likelihood of

failure-free software execution for a specific amount of time in a particular environment,"

states the American National Standards Institute. There is a distinction between hardware

reliability and software reliability. The enormous complexity of software makes it difficult

to achieve dependability. Modeling, measuring, and improving software reliability may be

thought of as the three main aspects of software reliability. It is challenging to strike a

balance between development time and budget and software dependability, but there are

several ways to increase software reliability. The optimal method, however, is to produce

high-quality software over the whole software life cycle. Metrics for measuring the

stability of software are the focus of this work. Early usage of metrics may help find and

fix flaws in requirements, which in turn can help avoid problems later in the software life

cycle. Measurements of Software Reliability are discussed in this article.

TYPES OF SOFTWARE METRICS

Fig 1 Classification of software metrics

PROPOSED FRAMEWORK FOR THE DIFFERENT METRICS

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 236

Many keyword-based searches and hybrid strategies using the genetic algorithm approach

have been developed to address the component selection problem in the context of

component-based development. The suggested method differs significantly from the

evolutionary algorithm in that it is centered on the software rather than the end user. This

is so because we prioritize simplicity when selecting components from the repository.

Here, we describe some of the prior efforts that have prepared the way for our own.

Several approaches have been proposed to solve the problem of component selection in the

CBSD, such as keyword-based searches, hybrid methods, and the genetic algorithm. In

contrast to the genetic algorithm, which was developed with the end user in mind, the

Optimal Component Selection (OCS) algorithm and the suggested strategy are primarily

concerned with the functionality of the program. That's because we're picking just the most

crucial pieces of the system to include in the final build as part of the component selection

from the repository, which helps keep the program as simple as possible. As a result, the

proposed technique has verified the individual components' reusability ratings. Priority

will be given to selecting the most functional components, taking into account factors like

their potential for reuse.

Here is a detailed strategy for selecting components, along with three distinct methods for

selecting the optimal combination of components from the repository.

Fig 2 Complete proposed strategy for component selection

The aforementioned flowchart depicts the three primary options available when choose

which component from the repository to employ in software development. In the first case,

you may just use the revised measurement PC3M (Pulse Code Modulation(sampling,

quantization and coding) that was proposed. In the second, you can use an OCS algorithm.

In the third, you can use a reusable process technique.

IDENTIFYING SOFTWARE QUALITY SUB-FACTORS

All of the aforementioned characteristics of high-quality software are subjective in nature.

Subjective considerations can't be evaluated using a qualitative scale since they lack a

numeric value. Quality must be broken down into smaller, more controllable parts. Each

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 237

software quality criteria may be broken down into its component parts. Instead, you may

think of the components of quality as individual characteristics. Using the perspective of a

sub-factor study of software quality, a quality assurance framework is provided. Below, we

dissect each of these standards into its constituent pieces, discussing the amount of studies

supporting it, the general agreement among academics, and the author's personal

evaluation:

Efficiency

The phrase "efficiency factor" describes a product's ability to maximize the use of

available resources while still meeting the demands of its consumers in a particular

context. The discovered efficiency-related characteristics are broken out in detail in Table.

Table 1: Efficiency Sub-Factor

S. No Sub-factor Description

1 Time Behaviour Product's ability to response time for a given

throughput.

2 Resource Behaviour Ability to use resource optimally to complete the

task in terms of i.e. memory, CPU, disk, network

usage, etc.

3 Efficiency Compliance Maturity to obey standards and regulations

regarding efficiency issues in specified

environment.

4 Reply time Ability to respond with output

5 Processing speed Rate at which the data is converted into

information.

6 Execution efficiency Product's run time efficiency of the software.

7 Hardware independence Degree to which the software is dependent on the

underlying hardware.

8 Robust It is the degree to which an executable work

product continues to function properly under the

abnormal condition or circumstances.

Maintainability

Maintainability refers to a product's adaptability to changes in the market and the ease with

which it may be repaired and improved. Table lists the discovered maintainability factor

sub-factors along with short explanations of each.

Table 2: Maintainability Sub-Factors

S.No Sub-factor Description

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 238

1 Analyzability The capability of the software product to be diagnosed for

deficiencies or cause s of failures in the software or for the

parts to be modified to be identified.

2 Changeability The capability of the software product to enable a specified

modification to be implemented.

3 Stability The capability of the software to minimize unexpected

effects from modifications of the software.

4 Testability The capability of the software product to enable modified

software to be validated.

5 Correct ability The capability of the software product to enable modified

software to be validated.

6 Extensibility The ease with which minor defects can be corrected between

major releases while the application or component is in us e

by its users.

7 Reusability It is the ease with which an application or components can be

enhanced in the future to meet the changing requirements.

8 Modularity The rate to which the used components of the product can be

reused on another product or system.

9 Adaptiveness The rate to which the product is built from separate

components so that change to one component has minimal

impact on the other components of the product.

10 Perfectiveness It is the ability of the product to accept the new environment,

new hardware, new operating system, new supporting

software.

11 Preventiveness It is the ability of the product to anticipate future problems.

12 System age It is the period since the first release of the product.

13 Understandability The capability of the software product to enable the user to

understand whether the software is suitable and how it can be

used for particular tasks and conditions of use.

14 Documentation Provision of programmer’s manual that explains

implementation of components.

15 Error debugging It is the meantime to debug, find and fix errors.

16 Maintainability

Compliance

The rate of how well product adhere s the standards and

regulations regarding maintainability.

Portability

The portability of a product is evaluated by how readily it may be transferred from one

location to another. All the identified determinants for mobility are summarized and

described in Table.

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 239

Table 3: Portability Sub-Factors

S.No Sub-factor Description

1 Adaptability The capability of the software to be modified for

different specified environments without applying

actions or means other than those provided for

this purpose for the software considered.

2 Install ability The capability of the software to be installed in a

specified environment.

3 Coexistence The capability of the software to coexist with

other independent software in a common

environment sharing common resources.

4 Replace ability The capability of the software to be used in place

of other specified software in the environment of

that software.

5 Portability Compliance The rate of how well product adheres the

standards and regulations regarding portability.

6 Conformance It is the rate to which the product meets the

requirement defined in the SRS and design

specification.

7 Reusability It is the ability of the product to be used more than

once and also to be used in different

environments.

8 Transferability It is the effort to transfer the product from one to

another hardware and also from one to another

operating system.

9 Flexibility It is the products ability to be usable in all

possible conditions for which it was designed.

Reliability

The term "reliability" refers to the frequency with which a product or component performs

as expected under certain conditions and within a specified time period. The identified

components of dependability are summarized in Table along with illustrative examples.

Table 4: Reliability Sub-Factors

S.No Sub-factor Description

1 Maturity The capability of the software to avoid failure a s a

result of faults in the software.

2 Fault Tolerance The capability of the software to maintain a

specified level of performance in case of software

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 240

faults or of infringement of its specified interface.

3 Accuracy Precision of computations and output.

4 Completeness Degree to which a full implementation of the

required functionalities has been achieved.

5 Recoverability The capability of the software to reestablish its

level of performance and recover the data directly

affected in the case of a failure.

6 Survivability It is the degree to which the essential services

continue to be provided in spite of either accidental

or malicious harm.

7 Consistency It is the us e of uniform design and implementation

techniques and notation throughout a project.

8 Simplicity It is the ease with which the software can be

understood.

9 Error tolerance It is the degree to which a product continues to

function properly despite the presence of erroneous

input.

10 Statistical behaviour The portability that the software will operate a s

expected over a specified time interval.

11 Availability The rate to which the component or system is

operational and accessible for us e when required.

12 Integrity The rate with which the component prevents the

unauthorized modification of or access to system

data.

13 Reliability Compliance The rate of how well product adhere s the standards

and regulations regarding reliability.

Usability

One aspect of a product's quality is its usability, or how well it works in the hands of its

intended audience to do the specified task in the specified environment. The usability

factor's subfactors are listed and briefly described in Table.

Table 5: Usability Sub-Factors

S.No Sub-factor Description

1 Understandability The capability of the software product to enable

the user to understand whether the software is

suitable and how it can be used for particular tasks

and conditions of use.

2 Learn ability The capability of the software product to enable

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 241

the user to learn its applications

3 Operability The capability of the software product to enable

the user to operate and control it.

4 Attractiveness The capability of the software product to be liked

by the user.

5 Ease of Use The rate to which the user finds the product easy

to operate and control.

6 Communicativeness Ease with which inputs and outputs can be

assimilated.

7 User friendly Ease with which the component can be operated.

8 Accessibility It is the degree to which the user interface enables

users with common or specified disabilities to

perform their specified task.

9 Customer satisfaction It is the degree of the user's contentment in the

usage of the component.

10 Documentation It is the availability of manuals and other

supporting documents for support of the user in its

operation

11 Training Ease with which the new users can use the system.

12 Usability Compliance The rate of how well product adheres the

standards and regulations regarding usability

issues in specified environment.

CONCLUSION

These metrics are now referred to as the object-oriented metrics. It is possible that the

software developer will make use of the framework since it facilitates enhancing the

quality of the software component in response to the values of the software metrics. The

quality assurance framework was developed after a thorough mapping of quality factors,

sub-factors, and software metrics. The metrics may be calculated with a high degree of

precision and understood with little time and effort investment at any time throughout the

development process. Since the framework shows a correlation between metrics and

quality characteristics, it may help to enhance software quality.

REFERENCE:

1. Mendivelso, L.F., Garcés, K. & Casallas, R. Metric-centered and technology-

independent architectural views for software comprehension. J Softw Eng Res Dev 6, 16

(2018). https://doi.org/10.1186/s40411-018-0060-6

2. Durga Patel, Pallavi (2016) Software Reliability: Metrics. International Journal of

Computer Applications (0975 – 8887) Volume 156 – No 5, December 2016

https://doi.org/10.1186/s40411-018-0060-6

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 242

3. Li, Yan-Fu & Jia, Chuanzhou. (2021). An overview of the reliability metrics for

power grids and telecommunication networks. Frontiers of Engineering Management. 8.

10.1007/s42524-021-0167-z.

4. Maatouk, Ali & Ayed, Fadhel & Biao, Shi & Li, Wenjie & Bao, Harvey & Zio,

Enrico. (2023). A Framework for the Evaluation of Network Reliability Under Periodic

Demand.

5. Kaur, Gurpreet and Kailash. bahl. “Software Reliability, Metrics, Reliability

Improvement Using Agile Process.” (2014).

6. Tariq Hassain Sheakh, Vijaypal Singh, “Taxonomical Study of Software

Reliability Growth Models”,International Journal of Scientific Research Publications,

Vol.2, Issue 5, pp-1-3 May 2012

7. Baldwin, C. et al. 2014. Hidden Structure: Using Network Methods to Map System

Architecture.

8. Curtis, B. et al. 2012. Estimating the Principal of an Application’s Technical Debt.

IEEE Software. 29, 6 (Nov. 2012), 34–42. DOI:https://doi.org/10.1109/MS.2012.156.

9. Ernst, N.A. et al. 2015. Measure It? Manage It? Ignore It? Software Practitioners

and Technical Debt. Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering (New York, NY, USA, 2015), 50–60.

10. Fenton, N. and Bieman, J. 2014. Software Metrics: A Rigorous and Practical

Approach, Third Edition. CRC Press, Inc.

11. Ferenc, R. et al. 2014. Software Product Quality Models. Evolving Software

Systems. T. Mens et al., eds. Springer Berlin Heidelberg. 65–100.

12. Jabangwe, R. et al. 2014. Empirical evidence on the link between objectoriented

measures and external quality attributes: a systematic literature review. Empirical Software

Engineering. 20, 3 (Mar. 2014), 640–693. DOI:https://doi.org/10.1007/s10664-013-9291-

7.

13. Kazman, R. et al. 2015. A Case Study in Locating the Architectural Roots of

Technical Debt. Proceedings of the 37th International Conference on Software

Engineering - Volume 2 (Piscataway, NJ, USA, 2015), 179–188.

14. Kruchten, P. et al. 2012. Technical Debt: From Metaphor to Theory and Practice.

IEEE Software. 29, 6 (Nov. 2012), 18–21. DOI:https://doi.org/10.1109/MS.2012.167

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 243

15. MacCormack, A. and Sturtevant, D.J. 2016. Technical debt and system

architecture: The impact of coupling on defect-related activity. Journal of Systems and

Software. 120, (Oct. 2016), 170–182. DOI:https://doi.org/10.1016/j.jss.2016.06.007.

