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Abstract 
Face recognition is one of the most ubiquitous examples of pattern recognition in machine 

learning, with numerous applications in security, access control, and law enforcement, 

among many others. Pattern recognition with classical algorithms requires significant 

computational resources, especially when dealing with high-resolution images in an 

extensive database. Quantum algorithms have been shown to improve the efficiency and 

speed of many computational tasks, and as such, they could also potentially improve the 

complexity of the face recognition process. Here, we propose a quantum machine learning 

algorithm for pattern recognition based on quantum principal component analysis, and 

quantum independent component analysis. A novel quantum algorithm for finding 

dissimilarity in the faces based on the computation of trace and determinant of a matrix 

(image) is also proposed. The overall complexity of our pattern recognition algorithm 

is O(NlogN)—N is the image dimension. As an input to these pattern recognition algorithms, 

we consider experimental images obtained from quantum imaging techniques with 

correlated photons, e.g. “interaction-free” imaging or “ghost” imaging. Interfacing these 
imaging techniques with our quantum pattern recognition processor provides input images 

that possess a better signal-to-noise ratio, lower exposures, and higher resolution, thus 

speeding up the machine learning process further. Our fully quantum pattern recognition 

system with quantum algorithm and quantum inputs promises a much-improved image 

acquisition and identification system with potential applications extending beyond face 

recognition, e.g., in medical imaging for diagnosing sensitive tissues or biology for protein 

identification. 

 

 
Introduction 
In any intelligent image processing 
system, there are essentially two main 
steps: the acquisition of the image and 
the recognition of the desired patterns. 
Image acquisition for any pattern 
recognition method can be performed in 

multiple ways. For instance, classical 
sources (incoherent light from thermal 
radiation or a coherent beam from a laser) 
or quantum sources (entangled photons 
obtained from down conversion or 
squeezed light) can be used to obtain the 
images. Classical bright field imaging 
techniques employing the former sources, 
have the disadvantage of high probe 

illumination requirement, especially while 
imaging sensitive samples. Additionally, 
they are also plagued by the shot noise 
inherent in the intensities, and the 
background noise from the environment. 
Quantum techniques such as quantum 
illumination, or ghost imaging or even 

interaction-free imaging, alleviates the 
problems of background noise, and the 
probe illumination by utilizing quantum 
correlations between photon pairs1,2. 
Furthermore, quantum sub-shot noise 
imaging3 and super resolution 
techniques4 enhance the noise sensitivity 
and resolution in any images beyond the 
classical limits. 
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Flowchart of the quantum algorithm for 
face recognition. The quantum algorithm 
is proposed to be performed in a quantum 
processor, which we call it quantum 
pattern recognition processor (QPRP). 
First the image is converted into matrix 
form, on which feature extraction 
algorithms such as quantum principal 

component analysis (QPCA) or quantum 
independent component analysis (QICA) 
are applied. QPCA extracts the eigenstates 
(or eigenfaces) of the covariance matrix of 
the images in the database. The 
eigenfaces include information like 
average face, gender (male, female), face 
direction, brightness, shadows, etc. QICA 
extracts the independent elements such 
as eyes, eyebrows, mouth, nose, etc. in a 
face. The complexity of this stage is 
O(logN)log—N is the dimension of th 

image. Then, the given faces are 
compared with the faces in the database 
by using dissimilarity measure based on 
the log determinant divergence, and the 

best match among the faces in the 
database is identified. 
 
As a second important step, pattern 
recognition in the acquired images is a 
prominent feature of any intelligent 
imaging system. Face recognition5,6 is 
one of the branches of pattern 
recognition, with numerous applications 
such as face ID verification, passport 
checks, entrance control, computer 
access control, criminal investigations, 
crowd surveillance, and witness face 
reconstruction7, among several others. 
For face recognition, several classical 
machine learning algorithms exist8, 

generally requiring huge computational 
resources especially when faced with the 
problem of identification from a large 
database. Quantum machine learning 
algorithms employing quantum features 
such as superposition and 
entanglement9,9,10,11,12,13,14,15,16,17 p
romise enhancements in terms of the 
computing resources and the speed 

compared to the classical counterparts. 

Several experimental researches have 
been done to implement these algorithms. 
In this article, we present a quantum 
algorithm for face recognition as one of 
the potential applications of quantum 
algorithms in machine learning. 
 
The problem of identification of faces from 
any images generally constitutes different 
steps (shown in Fig. 1): creating a 
database of faces consisting of training 
and test images, feature extraction using 
principal component analysis (PCA), 
linear discriminant analysis (LDA) or 
independent component analysis (ICA), 
feature matching using dissimilarity 

measures, and recognition26. PCA 
extracts the eigenstates (or eigenfaces) of 
the covariance matrix of the images in the 
database, including information like 
average face, gender (male or female), face 
direction, brightness, shadows, etc. ICA, 
however, extracts the independent 
elements such as eyes, eyebrows, mouth, 
nose, etc. in a face. Quantum algorithms 
which provide speedup for PCA and ICA 
have already been proposed9,. Here, we 
focus on three main steps: (1) Quantum 
Principle Component Analysis (QPCA)9, 
(2) Quantum Independent Component 
Analysis (QICA)27, and (3) Dissimilarity 
measures (i.e., face matching), to develop 

a quantum algorithm for face recognition. 
In what follows, we present a quantum 
algorithm for dissimilarity measures for 
face matching with speedup. This is based 
on a quantum algorithm to compute the 
log determinant divergence using both the 
determinant and the trace of a matrix. 
Our algorithm combined with the inputs 
obtained from quantum imaging 
techniques provides a fully intelligent 
pattern identification system, with the 
joint benefit of the low-dose and higher 
resolution of quantum imaging methods, 
and the speedup and efficiency of the 
quantum algorithms. Figure 1 shows the 
flowchart of the quantum algorithm for 

the pattern identification. 
 
Quantum Face Recognition 
Classical algorithms are unable to process 
quantum data directly. During the 
conversion of the quantum states (qubits) 
to classical data (bits), most of the 
information is lost in the measurement 
process, due to the “collapse” of the 
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wavefunction. Although techniques such 

as quantum state tomography 
implemented on unlimited ensemble of 
the states can be used to fully reconstruct 
the quantum states from classical 
projections, these processes are generally 
complex and expensive. Therefore, the 
optimal input to our quantum algorithms, 
would be the quantum states directly 
obtained from quantum processes, for 
example, quantum imaging methods, or 
from a quantum memory, without 
performing a strong measurement on the 
wavefunction. 
 
Photonic quantum memories28, allowing 
storage and on-demand retrieval of 

quantum states of light, is one of the key 
components for the realization of 
quantum optical pattern-recognition 
technology. Quantum memories 
essentially form a quantum database for 
the matching stage in the recognition 
process. With the state-of-art quantum 
memories, the possibility of storing 
hundreds of spatial modes has already 
been shown in experimental studies using 
atomic-cold gases29,30. Furthermore, 
using solid-state atomic memories, it is 
possible to simultaneously store 
hundreds of photonic quantum states in 
distinct temporal modes, thus allowing us 
to store patterns scanned at separate 

times31,32. In addition, optically 
accessible spin-states of certain atomic 
systems can reach several hours of 
coherence time33. A very recent 
experimental demonstration reports one-
hour memory lifetime for light storage, 
showing the feasibility of long-lived 
photonic quantum memory devices34. 
Atomic memory approaches have also 
been shown to reach high retrieval 
efficiencies up to 92% 35 and high 
fidelities above 99% 36. However, an 
implementation with all of the 
aforementioned properties still remains as 
a challenge in developing a practical 
quantum database memory. 

 
Quantum techniques such as quantum 
ghost imaging37, quantum lithography38, 
or quantum sensing39, when 
appropriately interfaced with photonic 
quantum processors, for example an 
array of optical fibers connected to an 
integrated quantum photonic circuit, can 
also act as inputs to our algorithms (see 

Fig. 2). Here for the case of our face 

recognition algorithm, we assume that the 
input images are acquired by quantum 
ghost imaging37. Ghost imaging exploits 
the spatial correlations between photon 
pairs generated through a nonlinear 
process called spontaneous parametric 
down-conversion (SPDC). Since the 
images are obtained by triggering the 
shutter in order to capture only the 
“coincident” photon pairs, the level of 
background noise is significantly reduced, 
along with a reduction in probe 
illumination. In a variation of this 
technique using non degenerate photon 
pairs, the image detection and sample 
interaction can happen at different 

wavelengths, which can be useful when 
imaging sensitive tissues when limited in 
detection technologies40. Combining 
quantum detection techniques such as 
interaction-free measurement with ghost 
imaging, the illumination level required 
for the same levels of Signal to Noise ratio 
(SNR) in images41 is further reduced 
significantly. Figure 3 shows some of the 
images of human faces obtained in a 
quantum ghost imaging setup, where 
spatially correlated photon pairs (namely 
signal and idler), are generated by 
pumping a BiBO crystal with pump 
photons. Phase holograms placed in a 
Spatial Light Modulator, a liquid crystal 

device, created by superimposing the 
human faces with a diffraction grating 
acts as an object for the signal photon, 
while the idler photon passes to the 
Intensified Charged Coupled Devices 
(ICCD) camera via a delaSupplementary 
Informationy line. The images are 
obtained by triggering the ICCD shutter 
with the signal photons detected through 
a Single Photon Avalanche Diode (SPAD) 
detector—see (SI) for the detail of the 
experimental setup. 
 
Face recognition in ghost images. (a) 
Images of the original human faces (top) 
and the corresponding experimental ghost 

images (bottom) obtained in a ghost 
imaging setup. A femtosecond laser is 
used to generate spatially entangled 
photon pairs. One of the photons 
illuminates a spatial light modulator, 
which imprints different images onto the 
photon, and can act as a trigger for the 
other photon that was detected by an 
intensified CCD camera. Each of the 
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images was obtained by the accumulation 

of 300 frames with an exposure time of 
0.5s, which translates to a run time of 
150s. (b) Quantum Independent 
Component Analysis (QICA), and 
Quantum Principal Component Analysis 
(QPCA), of the faces to detect the 
independent components, and principal 
features in the faces. (c) Dissimilarity 
measure between the ghost images with 
the images in the database for their 
identification. 
 
Quantum independent component 
analysis (QICA) 
In classical machine learning, 
Independent Component Analysis (ICA) is 

performed to decompose an observed 
signal into a linear combination of 
unknown independent signals26. Similar 
to the PCA, the ICA finds a new basis to 
represent the data, however with a 
different goal. We assume that there is a 

data set of faces s∈Rd  that is a collection 
of d independent elements in the face 
such as nose, eye, eyebrow, mouth, etc. 
Each image observed through a camera 

can be expressed as x=F⋅s, where F is a 
mixing matrix of the independent face 
elements. Repeated observation gives us a 
dataset x as {x(i),…,x(M)} , and ICA 
estimates the independent sources s(i)  
that had generated the face. We let 

W=F−1  which is the unmixing matrix and 
solve the linear systems of equations 
s(i)=Wx(i)  for estimating the independent 
elements of the face. We should note here 
that s(i) is a d-dimensional vector and s(i)j  
is the data of element j. Similarly, x(i)  is 
an d-dimensional vector, and x(i)j  is the 
observed (or recorded) element j by 
camera. The ICA can be exponentially 
speedup via a quantum algorithm for 
sparse matrices, with the Harrow-
Hassidim-Lloyd (HHL) algorithm27, which 
is used to solve linear systems of 
equations optimally with O(logN) . For 
comparison, classically it takes a time 
O(N3)  to be solved via the Gauss 

elimination, and approximately O(Nκ−−√)  
via iterative methods27 for a sparse 
matrix of size N×N , with κ  being the ratio 
between the greatest and the smallest 
eigenvalue. 
 
Pattern matching: comparing faces 
As important details of a face are obtained 
either by using QPCA or QICA, each face 

is represented in the form of a sparse 

matrix in which non-important elements 
are set to zero. The last and important 
step of the algorithm is comparing the 
face patterns to recognize the target face. 
Pattern matching algorithms investigate 
exact matches in the input with pre-
existing patterns in the database. In fact, 
the problem here is comparing matrices 
with each other. The evaluation of 
matching between matrices (or face 
patterns) can be done by using 
“dissimilarity”43 measures that calculate 
the “distance” between the matrices. The 
lower the values of the 
dissimilarity/distance measures, more 
similar the matrices, with the fully 

matched matrices having a zero distance. 
One such distance measure used to 
compare two matrices X and Y is called 

the “Log-determinant divergence 
”43,44  defined as, 

 
where N is the dimension of the matrices. 
When D=0, the matrices X and Y are 

completely matched, and higher the 
distance value the more different are the 
matrices. The least value among the all 
distance values identifies the best match 
and consequently recognizes the face. As 
it is seen in the distance formula, it is a 
benefit to be able to calculate the trace 
and the determinants of matrices with 
speedup to expedite the distance 
calculation. In the following, we propose 
quantum algorithms for computation of 
the determinant and the trace of a sparse 
matrix. 
 
Quantum computation of sparse matrix 
determinants and trace 
To obtain a measure of dissimilarity 
between two matrices we need to calculate 
the determinant and the trace of the 

sparse matrix A=X⋅Y−1. First we 
calculate Y−1 using the HHL 
algorithm27 and obtain A by multiplying 
it with X. We then apply the Quantum 

Phase Estimation (QPE) subroutine, 
which consists of a quantum Fourier 
transform (QFT) followed by a controlled 
Unitary (CUCU) operation, with U=e−iAt, 
and a inverse quantum Fourier transform. 
We then apply a controlled Rotation 
operation followed by the inverse 
Quantum Phase Estimation (QPE) 
subroutine. At the end we have a 
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multiplication operator ΠΠ which finally 

gives us the product of the eigenvalues 
 

Conclusion 
In summary, we propose a new concept of 
a quantum protocol for 2D face 
recognition, combining the benefits of 
quantum imaging in image acquisition 
with the speedup from the quantum 
machine learning algorithms. In this 
concept, we consider images to be 
obtained via a ghost imaging protocol 
either as inputs to the quantum memories 
or as a hardware encoding of quantum 
information for the photonic pattern 
recognition processor. Feeding the 

“images” directly from a quantum protocol 
also eliminates the need for the 
conversion of classical data to quantum 
inputs for the processor saving valuable 
computational resources. The quantum 
pattern recognition processor then runs 
an algorithm composed of three main 
subroutines: (1) quantum principal 
components analysis (QPCA), (2) quantum 
independent component analysis (QICA), 
and (3) quantum dissimilarity measures 
for comparing faces. For the QPCA and 
QICA, we propose slight modifications in 
the existing algorithms, whereas for 
finding the dissimilarity measure, we 
propose a novel algorithm for obtaining 
the distance between two matrices based 

upon a metric called log-determinant 
divergence. Our algorithm obtains the 
determinant and the trace of the two 
matrices in O(NlogN)(log) time—N is the 
dimension of the matrix. Complexity 
analysis shows that all of the three parts 
have speedup as compared to their 
classical counterparts, with the overall 
complexity given by O(NlogN)(log). Our 
conceptual protocol provides a framework 
for an intelligent and fully quantum image 
recognition system with quantum inputs 
and a quantum machine learning 
processor. The joint benefits of the 
quantum image acquisition and quantum 
machine learning promises exciting 

technological developments in the field of 
image recognition systems. 
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