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Abstract— The Map Reduce gadget and its open authority execution Hadoop have became the 

real degree for adaptable investigation on expansive data sets as of late. One of the critical 

worries in Hadoop is the way to limit the achievement period (i.E., make span) of an 

arrangement of Map Reduce employments. The cutting-edge Hadoop simply permits static space 

design, i.E., settled quantities of guide openings and reduce openings all through the life of a 

collection. In any case, we discovered that any such static association would possibly spark off 

low framework asset uses and in addition lengthy completing length. Persuaded with the aid of 

this, we recommend sincere but effective plans which make use of space percentage in the 

middle of manual and decrease assignments as a tunable deal with for diminishing the makespan 

of a given set. By making use of the workload statistics of as of past due finished occupations, 

our plans step by step allots property (or openings) to outline reduce errands. We done the 

displayed plans in Hadoop V0.20.2 and assessed them with delegate MapReduce benchmarks at 

Amazon EC2. The trial results showcase the viability and power of our plans beneath both 

trustworthy workloads and more unpredictable combined workloads. 

Index Terms—MapReduce jobs; Hadoop scheduling; reduced makespan; slot configuration; 

 

1 INTRODUCTION 

MapReduce [1] has turn out to be the 

leading paradigm in current years for 

parallel massive facts processing. Its open 

supply implementation Apache Hadoop [2] 

has additionally emerged as a famous 

platform for daily statistics processing and 

information evaluation. With the upward 

thrust of cloud computing, MapReduce is 

not just for internal information technique in 

massive groups. It is now convenient for a 

ordinary user to release a MapReduce 

cluster at the cloud, e.G., AWS MapReduce, 

for records-extensive applications.When 

increasingly packages are adopting the 

MapReduce framework, a way to enhance 

the overall performance of a MapReduce 

 
cluster becomes a focal point of  research 

and improvement. Both academia and 

industry have positioned high-quality efforts 

on process scheduling, resource control, and 

Hadoop packages [3]–[11]. As a 

complicated system, Hadoop is configured 

with a huge set of machine parameters. 

While it gives the ability to customise the 

cluster for distinct programs, it's miles hard 

for users to apprehend and set the most 

useful values for those parameters. In this 

paper, we purpose to develop algorithms for 

adjusting a primary system parameter with 

the purpose to improve the overall 

performance (i.E., lessen the makespan) of a 

batch of MapReduce jobs. 
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A classic Hadoop cluster consists of a single 

grasp node and more than one slave nodes. 

The master node runs the JobTracker routine 

that's accountable for scheduling jobs and 

coordinating the execution of duties of every 

activity. 

Each slave node runs the TaskTracker 

daemon for hosting the execution of 

MapReduce jobs. The idea of “slot” is used 

to signify the potential of accommodating 

responsibilities on every node. In a Hadoop 

machine, a slot is assigned as a map slot or a 

lessen slot serving map obligations or lessen 

duties, respectively. At any given time, 

simplest one project may be jogging in 

keeping with slot. The number of to be had 

slots in line with node certainly affords the 

most diploma of parallelization in Hadoop. 

Our experiments have shown that the slot 

configuration has a giant impact on machine 

overall performance. The Hadoop 

framework, however, makes use of fixed 

numbers of map slots and reduce slots at 

every node as the default putting in the 

course of the life of a cluster. The values on 

this fixed configuration are normally 

heuristic numbers with out considering 

activity traits. 

Therefore, this static setting is not nicely 

optimized and may preclude the 

performance development of the whole 

cluster. In this work, we recommend and 

implement a new mechanism to dynamically 

allocate slots for map and reduce tasks. The 

primary goal of the brand new mechanism is 

to enhance the of completion time (i.E., the 

makespan) of a batch of MapReduce jobs 

whilst maintain the simplicity in 

implementation and control of the slot- 

primarily based Hadoop layout. The key 

idea of this new mechanism, named TuMM, 

is to automate the slot task ratio among map 

and reduce obligations in a cluster as a 

tunable knob for lowering the makespan of 

MapReduce jobs. The Workload Monitor 

(WM) and the Slot Assigner (SA) are 

the two primary components brought by 

TuMM. The WM that resides in the 

JobTracker periodically collects the 

execution time data of these days completed 

responsibilities and estimates the prevailing 

map and reduce workloads inside the 

cluster. The SA module takes the estimation 

to determine and modify the slot ratio 

between map and reduce obligations for 

each slave node. With TuMM, the map and 

decrease phases of jobs may be better 

pipelined beneath precedence based 

schedulers, and for that reason the makespan 

is reduced. We further check out the 

dynamic slot assignments in heterogeneous 

environments, and advocate a new version 

of TuMM, named H TuMM, which sets the 

slot configurations for each person node to 

reduce the makespan of a batch of jobs. We 

implemented the offered schemes in Hadoop 

V0.20.2 and evaluated 

them with representative MapReduce 

benchmarks at Amazon EC2. The 

experimental consequences show the 

effectiveness and robustness of our schemes 

below each simple workloads and more 

complex blended workloads. The rest of the 

paper is organized as follows. We give an 

explanation for the incentive of our work via 

some experimental examples in Section 2. 

We formulate the hassle and derive the most 

effective placing for static slot configuration 

in a homogeneous cluster in Section three. 

The layout info of the dynamic mechanism 
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for homogeneous clusters and heterogeneous 

clusters are presented in Section 4 and 

Section five. 

2 MOTIVATION 

Currently, the Hadoop framework uses fixed 

numbers of map slots and reduce slots on 

each node throughout the lifetime of a 

cluster. However, such a fixed slot 

configuration may lead to low resource 

utilizations and poor performance especially 

when the system is processing varying 

workloads. We here use two simple cases to 

exemplify this deficiency. In each case, 

three jobs are submitted to a Hadoop cluster 

with 4 slave nodes and each slave node has 

4 available slots. Details of the experimental 

setup are introduced in Section 6. To 

illustrate the impact of resource 

assignments, we also consider different 

static settings for map and reduce slots on a 

slave node. For example, when the slot ratio 

is equal to 1:3, we have 1 map slot and 3 

reduce slots available per node. We then 

measure the overall lengths (i.e., makespans) 

for processing a batch of jobs, which are 

shown in Fig. 1. Case 1: We first submit 

three Classification jobs to process a 10 GB 

movie rating data set. We observe that 

makespan is varying under different slot 

ratio settings and the best performance (i.e., 

shortest makespan) is achieved when each 

slave node has three map slots and one 

reduce slot, see the left column of Fig. 1. 

To interpret this effect, we further plot the 

execution times of each task in Fig. 2. 

Clearly, Classification is a map-intensive 

application; for example, when we equally 

distribute resources (or slots) between map 

and reduce tasks, i.e., with the slot ratio of 

2:2, the length of a map phase is longer than 

that of a reduce phase, see Fig. 2(a). It 

follows that each job’s reduce phase 

(including shuffle operations and reduce 

operations) overlaps with its map phase for a 

long period. 
 

 

Fig. 1. The makespans of jobs under case 1 

(i.e., Classification) and case 2 (i.e., Grep). 

The map and reduce slot ratios on each slave 

node are set to 1:3, 2:2, and 3:1. 
 

 

(a) 2 map slots : 2 reduce slots 
 

(b) 3 map slots : 1 reduce slot 

Fig. 2. Task execution times of three 

Classification jobs under different static slot 

configurations, where each node has (a) 2 

map slots and 2 reduce slots, and (b) 3 map 

slots and 1 reduce slot. Each arrowed line 

represents the execution of one task, and the 

solid (resp. dashed) ones represent map 

(resp. reduce) tasks. In addition, we use 

three different colors to discriminate the 

three jobs. 
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However, as the reduce operations can only 

start after the end of the map phase, the 

occupied reduce slots stay in shuffle for a 

long period, mainly waiting for the outputs 

from the map tasks. Consequently, system 

resources are underutilized. For example, we 

tracked the CPU utilizations of each task in 

a slave node every 5 seconds and Table 1 

shows part of the records in one of such 

overlapping periods. At each moment, the 

overall CPU utilization (i.e., the summation 

of CPU utilizations of the four tasks) is 

much less than 400%, for a node with 4 

cores. We then notice that when we assign 

more slots to map tasks, e.g., with the slot 

ratio of 3:1, each job experiences a shorter 

map phase and most of its reduce phase 

overlaps with the following job’s map 

phase, see Fig. 2(b). The average CPU 

utilization is also increased by 20% 

compared to those under the the slot ratio of 

2:2. It implies that for map-intensive jobs 

like Classification, one should assign more 

resources (slots) to map tasks in order to 

improve the performance in terms of 

makespan. 

Case 2: In this case, we turn to consider 

reduceintensive applications by submitting 

three Grep jobs to scan the 10 GB movie 

rating data. Similar to case 1, we also 

investigate three static slot configurations. 

TABLE 1 

Real time CPU utilizations of each task on a 

slave node in the overlapping time period of 

a job’s map and reduce phases. The slot 

ratio per node is 2:2. 

 

 

 

First, we observe that each job takes a 

longer time to process its reduce phase than 

its map phase when we have 2 map and 2 

reduce slots per node, see Fig. 3(a). Based 

on the observation in case 1, we expect a 

reduced makespan when assigning more 

slots to reduce tasks, e.g., with the slot ratio 

of 1:3. However, the experimental results 

show that the makespan under this slot ratio 

setting (1:3) becomes even longer than that 

under the setting of 2:2, see the right column 

of Fig. 1. We then look closely at the 

corresponding task execution times, see Fig. 

3(b). We find that the reduce tasks indeed 

have excess slots such that the reduce phase 

of each job startstoo early and wastes time 

waiting for the output from its map phase. In 

fact, a good slot ratio should be setbetween 

2:2 and 1:3 to enable each job’s reduce 

phase to fully overlap with the following 

job’s map phase rather than its own map 

phase.In summary, in order to reduce the 

makespan of a batch of jobs, more resources 

(or slots) should be assigned to map (resp. 

reduce) tasks if we have map (resp. reduce) 

intensive jobs. On the other hand, a simple 

adjustment in such slot configurations is not 

enough. An effective approach should tune 

the slot assignments such that the execution 

times of map and reduce phases can be well 

balanced and the makespan of a given set 

can be reduced to the end. 

3 SYSTEM MODEL AND STATIC 

SLOT CONFIGURATION 

In this section, we present a homogeneous 

Hadoop system model we considered and 

1 14% 109% 26% 0% 

6 103% 93% 0% 4% 

11 93% 99% 8% 0% 

16 100% 100% 0% 0% 
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map 
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duce 

3397/re 
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formulate the problem. In addition, we 

analyze the default static slot configuration 

in Hadoop and present an algorithm to 

derive the best configuration. 

 Problem Formulation 

In our problem setting, we consider that a 

Hadoop cluster consisting of k nodes has 

received a batch of n jobs for processing. 

We use J to represent the set of jobs, J = 

f[j1; j2; : : : ; jn]. Each job ji is configured 

with nm(i) map tasks and nr(i) reduce tasks. 

Let st(i) and ft(i) indicate the start time and 

the finish timeof job ji, respectively. The 

total slots number in the Hadoop cluster is 

equal to S, and let sm and sr be the number 

of map slots and reduce slots, respectively. 

We then have S = sm + sr. In this paper, our 

objective is to develop an algorithm to 

dynamically tune the parameters of sm and 

sr, given a fixed value of S, in order to 

minimize the makespan of the given batch 

of jobs, i.e., minimizefmaxfft(i); 8i 2 [1; 

n]gg. Table 2 lists important notations that 

have been used in the rest of this paper. 

TABLE 2 

Notations used in this paper. 
 

In a Hadoop system, makespan of multiple 

jobs also depends on the job scheduling 

algorithm which is coupled with our solution 

of allocating the map and reduce slots on 

each node. In this paper, we only consider 

using the default FIFO (First-In-First-Out) 

job scheduler because of the following two 

reasons. First, given n jobs waiting for 

service, the performance of FIFO is no 

worse than other schedulers in terms of 

makespan. In the example of “Case 2” 
mentioned in Section 2, the makespan under 

FIFO is 594 sec while Fair, an alternative 

scheduler in Hadoop, consumes 772 sec to 

finish jobs. Second, using FIFO simplifies 

the performance analysis because generally 

speaking, there are fewer concurrently 

running jobs at any time. Usually two jobs, 

with one in map phase and the other in 

reduce phase. 

Furthermore, we use execution time to 

represent the workload of each job. As a 

MapReduce job is composed of two phases, 

we define wm(i) and wr(i) as the workload 

of map phase and reduce phase in job ji, 

respectively. We have developed solutions 

with and without the prior knowledge of the 

workload and we will discuss how to obtain 

this information later. 

 Static Slot Configuration withWorkload 

Information 

First, we consider the scenario that the 

workload of a job is available and present 

the algorithm for staticslot configuration 

which is default in a Hadoop system. 
 

Fig. 3. Task execution times of a batch of 

Grep jobs under different static slot 

configurations, where each node has (a) 2 
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map slots and 2 reduce slots, and (b) 1 map 

slot and 3 reduce slots. 

Basically, the Hadoop cluster preset the 

values of sm and sr under the constraint of S 

= sm + sr before executing the batch of jobs, 

and the slot assignment will not be changed 

during the entire process. We have 

developed the following Algorithm 1 to 

derive the optimal values of sm and sr. 

Our algorithm and analysis are based on an 

observation that the time needed to finish 

the workload of map or reduce phase is 

inversely proportional to the number of slots 

assigned to the phase in a homogeneous 

Hadoop cluster. Given sm and sr, the map 

(resp. reduce) phase of ji needs 

nm(i)sm(resp. nr(i) sr ) rounds to finish. In 

each round, sm map tasks or sr reduce tasks 

are processed in parallel and the time 

consumed is equal to the execution time of 

one map or one reduce task. Let tm(i) and 

tr(i) be the average execution time for a map 

task and a reduce task, respectively. The 

workloads of map and reduce phases are 

defined as 

wm(i) = nm(i) _ tm(i);wr(i) = nr(i) _ tr(i): 

(1) 

Algorithm 1 can derive the best static setting 

of sm and sr given the workload 

information. The outer loop (lines 1–10) in 

the algorithm enumerates the value of sm 

and sr (i.e., Ssm). For each setting of sm and 

sr, the algorithm first calculates the 

workload (wm(i) and wr(i)) for each job ji in 

lines 3–5. The second inner loop (lines 6–8) 

is to calculate the finish time of each job. 

Under the FIFO policy, there are at most 

two concurrently running jobs in the Hadoop 

cluster. Each job’s map or reduce phase 

cannot start before the precedent job’s map 

or reduce phase is finished. More 

specifically, the start time of map tasks of 

job ji, i.e., st(i), is the finish time of ji1’s 
map phase, i.e., st(i) = st(i . 1) + wm(i.1) sm 

. Additionally, the start time of ji’s reduce 

phase should be no earlier than both the 

finish time of ji’s map phase and the finish 

time of ji.1’s reduce phase. Therefore, the 

finish time of ji is ft(i) = max(st(i) + wm(i) 

sm; ft(i . 1)) + wr(i) sr . Finally, the 

variables Opt SM and Opt MS keep track of 

the optimal value of sm and the 

corresponding makespan (lines 9–10), and 

the algorithm returns Opt SM and S Opt SM 

as the values for sm and sr at the end. The 

time complexity of the algorithm is O(S.n). 
 

 
 

4 DYNAMIC SLOT CONFIGURATION 

UNDER HOMOGENEOUS 

ENVIRONMENTS 

As discussed in Section 2, the default 

Hadoop cluster uses static slot configuration 

and does not perform well for varying 

workloads. The inappropriate setting of sm 

and sr may lead to extra overhead because of 

the following two cases: (1) if job ji’s map 

phase is completed later than job ji1’s 
reduce phase, then the reduce slots will be 

idle for the interval period of 

(st(i)+wm(i))ft(i1), see Fig. 4(a); (2) if job 

ji’s map phase is completed earlier than the 

job ji1’s reduce phase, then ji’s reduce 
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tasks have to wait for a period of ft(i  1)  
(st(i) + wm(i)) until reduce 

slots are released by ji1, see Fig. 4(b). In 

this section, we present our solutions that 

dynamically allocate the slots to map and 

reduce tasks during the execution of jobs. 

The architecture of our design is shown in 

Fig. 5. In dynamic slot configuration, when 

one slot becomes available upon the 

completion of a map or reduce task, the 

Hadoop system will reassign a map or 

reduce task to the slot based on the cPurrent 

optimal values of sm and sr. There are 

totally i2[1;n](nm(i) + nr(i)) tasks and at the 

end of each task, Hadoop needs to decide 

the role of the available slot (either a map 

slot or a reduce slot). In this setting, In this 

section, we present our solutions that 

dynamically allocate the slots to map and 

reduce tasks during the execution of jobs. 

The architecture of our design is shown in 

Fig. 5. In dynamic slot configuration, when 

one slot becomes available upon the 

completion of a map or reduce task, the 

Hadoop system will reassign a map or 

reduce task to the slot based on the cPurrent 

optimal values of sm and sr. There are 

totally i2[1;n](nm(i) + nr(i)) tasks and at the 

end of each task, Hadoop needs to decide 

the role of the available slot (either a map 

slot or a reduce slot). In this setting, 

therefore, we cannot enumerate all the 

possible values of sm and sr (i.e., 2 P I 

(nm(i)+nr(i)) combinations) as in Algorithm 

1. Instead, we modify our objective in the 

dynamic slot configuration as there is no 

closed-form expression of the makespan. 

 

 

Fig. 4. Illustration of aligning the map and 

reduce phases. (a) and (b) are the two 

undesired cases mentioned above, and our 

goal is to achieve (c).Our goal now is, for 

the two concurrently running jobs (one in 

map phase and the other in reduce phase), to 

minimize the completion time of these two 

phases. Our intuition is to eliminate the two 

undesired cases mentioned above by 

aligning the completion of ji’s map phase 

and   ji1’s   reduce   phase,   see   Fig.  4(c). 

Briefly, we  use  the  slot  assignment  as   a  

tunable   knob    to    change    the level of 

parallelism  of  map  or  reduce tasks. When 

we assign more  map  slots, map tasks obtain 

more system resources and could be finished 

faster, and vice versa for reduce tasks. In the 

rest of this section, we first present our basic 

solution with  the prior knowledge  of  job 

workload.  Then, we  describe  how   to 

estimate  the workload in practice when it  is 

not available. In addition, we present  a 

feedback control-based solution to provide 

more accurate estimation of the workload. 

Finally, we discuss the design of task 

scheduler in compliance with our solution. 
 

 

Fig. 5. The architecture overview of our 

design. The shade rectangles indicate our 

new/modified components in Hadoop. 
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5 Workload Estimation 

Our solution proposed above depends on 

prior knowledge of workload information. In 

practice, workload can be derived from job 

profiles, training phase, orother empirical 

settings. In some applications, however, 

workload information may not be available 

or accurate. In this subsection, we present a 

method that estimates the workload during 

the job execution without any prior 

knowledge.We use w0 m and w0 r to 

represent the remaining workload of a map 

or reduce phase, i.e., the summation of 

execution time of the unfinished map or 

reduce tasks. Note that we only track the 

map/reduce workloads of running jobs, but 

not the jobs waiting in the queue. Basically, 

the workload is calculated as the 

multiplication of the number of remaining 

tasks and the average task execution time of 

a job. Specifically, when a map or reduce 

task is finished, the current workload 

information needs to be updated, as shown 

in Algorithm 2, where n0 m(i)/ n0 r(i) is the 

number of unfinished map/reduce tasks of 

job ji, and tm(i)/ tr(i) means the average 

execution time of finished map/reduce tasks 

from ji. Note that the execution time of each 

finished task is already collected and 

reported to the JobTracker in current 

Hadoop systems. In addition, we use the 

Welford’s one pass algorithm to calculate 

the average of task execution times, which 

incurs very low overheads on both time and 

memory space. 

6 Slot Assigner 

The task assignment in Hadoop works in a 

heartbeat fashion: the TaskTrackers report 

slots occupation situation to the JobTracker 

with heartbeat messages; and the JobTracker 

selects tasks from the queue and assigns 

them to free slots. There are two new 

problems need to be addressed when 

assigning tasks under TuMM. First, slots of 

each type should be evenly distributed 

across the slave nodes. For example, when 

we have a new slot assignment sm = 5; sr = 

7 in a cluster with 2 slave nodes, a 2:3/4:3 

map/reduce slots distribution is better than 

the 1:4/5:2 map/reduce slots distribution in 

case of resource contention. Second, the 

currently running tasks may stick with their 

slots and therefore the new slot assignments 

may not be able to apply immediately. 

To address these problems, our slot 

assignment module (SA) takes both the slots 

assignment calculated through Eq. 6-7 and 

the situation of currently running tasks into 

consideration when assigning tasks. 

The process of SA is shown in Algorithm 3. 

The SA first calculates the map and reduce 

slot assignments of slave node x (line 1), 

indicated by sm(x) and sr(x), based on the 

current values of sm and sr and the number 

of running tasks in cluster. We use the floor 

function since slots assignments on each 

node must be integers. Due to the flooring 

operation, the assigned slots (sm(x)+sr(x)) 

on node x may be fewer than the available 

slots (S=k). In lines 3–6, we increase either 

sm(x) or sr(x) to compensate slot 

assignment. The decision is based on the 

deficit of current map and reduce slots (line 

3), where sm/ sr represent our target 
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assignment and rtm/ rtr are the number of 

current running map/reduce tasks. 

Eventually, we assign a task to the available 

slot in lines 7–10. Similarly, the decision is 

made by comparing the deficit of map and 

reduce tasks on node x, where sm(x)/ sr(x) 

are our target assignment and rtm(x)/ rtr(x) 

are the numbers of running tasks. 
 

 

7 CONCLUSION 

In this paper, we supplied a unique slot 

management scheme, named TuMM, to 

allow dynamic slot configuration in Hadoop. 

The principal goal of TuMM is to improve 

aid utilization and decrease the makespan of 

more than one jobs. To meet this goal, the 

provided scheme introduces important 

components: Workload Monitor periodically 

tracks the execution facts of lately 

completed obligations and estimates the 

present workloads of map and reduce tasks 

and Slot Assigner dynamically allocates the 

slots to map and decrease responsibilities 

with the aid of leveraging the anticipated 

workload statistics. We similarly prolonged 

our scheme to manipulate assets (slots) for 

heterogeneous clusters. The new edition of 

our scheme, named H TuMM, reduces the 

makespan of a couple of jobs by means of 

one at a time placing the slot assignments 

for the node in a heterogeneous cluster. We 

carried out TuMM and H TuMM on the top 

of Hadoop v0.20.2 and evaluated each 

schemes with the aid of going for walks 

representative MapReduce benchmarks and 

TPC-H question units in Amazon EC2 

clusters. The experimental effects exhibit up 

to twenty-eight% reduction in the 

makespans and 20% increase in resource 

utilizations. The effectiveness and the 

robustness of our new slot control schemes 

are demonstrated under both homogeneous 

and heterogeneous cluster environments. 

In the future, we are able to similarly 

investigate the most fulfilling overall slot 

quantity configuration within the slot based 

totally Hadoop platform in addition to the 

useful resource control policy in subsequent 

generation Hadoop YARN structures. 
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