

COPY RIGHT

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 15th Jan 2019. Link :

http://www.ijiemr.org/main/index.php?vol=Volume-08&issue=ISSUE-01

Title: SELF SLOT CONFIGURATION USING AWS NETWORKS FOR HADOOP CLUSTERS

Volume 08, Issue 01, Pages: 191–200.

Paper Authors

PILLARI BHARGAVI, P NAGESWARA RAO
 Dept of CSE, Swetha Institute of Technology & Science, Tirupati, AP, India.

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 www.ijiemr.org

http://www.ijiemr.org/main/index.php?vol=Volume-08&issue=ISSUE-01
http://www.ijiemr.org/

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 191

SELF SLOT CONFIGURATION USING AWS NETWORKS FOR

HADOOP CLUSTERS
1
PILLARI BHARGAVI,

2
P NAGESWARA RAO

Dept of CSE, Swetha Institute of Technology & Science, Tirupati, AP, India.
1
lakshmidevi0417@gmail.com,

2
puttanr@rediffmail.com

Abstract— The Map Reduce gadget and its open authority execution Hadoop have became the

real degree for adaptable investigation on expansive data sets as of late. One of the critical

worries in Hadoop is the way to limit the achievement period (i.E., make span) of an

arrangement of Map Reduce employments. The cutting-edge Hadoop simply permits static space

design, i.E., settled quantities of guide openings and reduce openings all through the life of a

collection. In any case, we discovered that any such static association would possibly spark off

low framework asset uses and in addition lengthy completing length. Persuaded with the aid of

this, we recommend sincere but effective plans which make use of space percentage in the

middle of manual and decrease assignments as a tunable deal with for diminishing the makespan

of a given set. By making use of the workload statistics of as of past due finished occupations,

our plans step by step allots property (or openings) to outline reduce errands. We done the

displayed plans in Hadoop V0.20.2 and assessed them with delegate MapReduce benchmarks at

Amazon EC2. The trial results showcase the viability and power of our plans beneath both

trustworthy workloads and more unpredictable combined workloads.

Index Terms—MapReduce jobs; Hadoop scheduling; reduced makespan; slot configuration;

1 INTRODUCTION

MapReduce [1] has turn out to be the

leading paradigm in current years for

parallel massive facts processing. Its open

supply implementation Apache Hadoop [2]

has additionally emerged as a famous

platform for daily statistics processing and

information evaluation. With the upward

thrust of cloud computing, MapReduce is

not just for internal information technique in

massive groups. It is now convenient for a

ordinary user to release a MapReduce

cluster at the cloud, e.G., AWS MapReduce,

for records-extensive applications.When

increasingly packages are adopting the

MapReduce framework, a way to enhance

the overall performance of a MapReduce

cluster becomes a focal point of research

and improvement. Both academia and

industry have positioned high-quality efforts

on process scheduling, resource control, and

Hadoop packages [3]–[11]. As a

complicated system, Hadoop is configured

with a huge set of machine parameters.

While it gives the ability to customise the

cluster for distinct programs, it's miles hard

for users to apprehend and set the most

useful values for those parameters. In this

paper, we purpose to develop algorithms for

adjusting a primary system parameter with

the purpose to improve the overall

performance (i.E., lessen the makespan) of a

batch of MapReduce jobs.

mailto:lakshmidevi0417@gmail.com
mailto:2puttanr@rediffmail.com

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 192

A classic Hadoop cluster consists of a single

grasp node and more than one slave nodes.

The master node runs the JobTracker routine

that's accountable for scheduling jobs and

coordinating the execution of duties of every

activity.

Each slave node runs the TaskTracker

daemon for hosting the execution of

MapReduce jobs. The idea of “slot” is used

to signify the potential of accommodating

responsibilities on every node. In a Hadoop

machine, a slot is assigned as a map slot or a

lessen slot serving map obligations or lessen

duties, respectively. At any given time,

simplest one project may be jogging in

keeping with slot. The number of to be had

slots in line with node certainly affords the

most diploma of parallelization in Hadoop.

Our experiments have shown that the slot

configuration has a giant impact on machine

overall performance. The Hadoop

framework, however, makes use of fixed

numbers of map slots and reduce slots at

every node as the default putting in the

course of the life of a cluster. The values on

this fixed configuration are normally

heuristic numbers with out considering

activity traits.

Therefore, this static setting is not nicely

optimized and may preclude the

performance development of the whole

cluster. In this work, we recommend and

implement a new mechanism to dynamically

allocate slots for map and reduce tasks. The

primary goal of the brand new mechanism is

to enhance the of completion time (i.E., the

makespan) of a batch of MapReduce jobs

whilst maintain the simplicity in

implementation and control of the slot-

primarily based Hadoop layout. The key

idea of this new mechanism, named TuMM,

is to automate the slot task ratio among map

and reduce obligations in a cluster as a

tunable knob for lowering the makespan of

MapReduce jobs. The Workload Monitor

(WM) and the Slot Assigner (SA) are

the two primary components brought by

TuMM. The WM that resides in the

JobTracker periodically collects the

execution time data of these days completed

responsibilities and estimates the prevailing

map and reduce workloads inside the

cluster. The SA module takes the estimation

to determine and modify the slot ratio

between map and reduce obligations for

each slave node. With TuMM, the map and

decrease phases of jobs may be better

pipelined beneath precedence based

schedulers, and for that reason the makespan

is reduced. We further check out the

dynamic slot assignments in heterogeneous

environments, and advocate a new version

of TuMM, named H TuMM, which sets the

slot configurations for each person node to

reduce the makespan of a batch of jobs. We

implemented the offered schemes in Hadoop

V0.20.2 and evaluated

them with representative MapReduce

benchmarks at Amazon EC2. The

experimental consequences show the

effectiveness and robustness of our schemes

below each simple workloads and more

complex blended workloads. The rest of the

paper is organized as follows. We give an

explanation for the incentive of our work via

some experimental examples in Section 2.

We formulate the hassle and derive the most

effective placing for static slot configuration

in a homogeneous cluster in Section three.

The layout info of the dynamic mechanism

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 193

for homogeneous clusters and heterogeneous

clusters are presented in Section 4 and

Section five.

2 MOTIVATION

Currently, the Hadoop framework uses fixed

numbers of map slots and reduce slots on

each node throughout the lifetime of a

cluster. However, such a fixed slot

configuration may lead to low resource

utilizations and poor performance especially

when the system is processing varying

workloads. We here use two simple cases to

exemplify this deficiency. In each case,

three jobs are submitted to a Hadoop cluster

with 4 slave nodes and each slave node has

4 available slots. Details of the experimental

setup are introduced in Section 6. To

illustrate the impact of resource

assignments, we also consider different

static settings for map and reduce slots on a

slave node. For example, when the slot ratio

is equal to 1:3, we have 1 map slot and 3

reduce slots available per node. We then

measure the overall lengths (i.e., makespans)

for processing a batch of jobs, which are

shown in Fig. 1. Case 1: We first submit

three Classification jobs to process a 10 GB

movie rating data set. We observe that

makespan is varying under different slot

ratio settings and the best performance (i.e.,

shortest makespan) is achieved when each

slave node has three map slots and one

reduce slot, see the left column of Fig. 1.

To interpret this effect, we further plot the

execution times of each task in Fig. 2.

Clearly, Classification is a map-intensive

application; for example, when we equally

distribute resources (or slots) between map

and reduce tasks, i.e., with the slot ratio of

2:2, the length of a map phase is longer than

that of a reduce phase, see Fig. 2(a). It

follows that each job’s reduce phase

(including shuffle operations and reduce

operations) overlaps with its map phase for a

long period.

Fig. 1. The makespans of jobs under case 1

(i.e., Classification) and case 2 (i.e., Grep).

The map and reduce slot ratios on each slave

node are set to 1:3, 2:2, and 3:1.

(a) 2 map slots : 2 reduce slots

(b) 3 map slots : 1 reduce slot

Fig. 2. Task execution times of three

Classification jobs under different static slot

configurations, where each node has (a) 2

map slots and 2 reduce slots, and (b) 3 map

slots and 1 reduce slot. Each arrowed line

represents the execution of one task, and the

solid (resp. dashed) ones represent map

(resp. reduce) tasks. In addition, we use

three different colors to discriminate the

three jobs.

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 194

However, as the reduce operations can only

start after the end of the map phase, the

occupied reduce slots stay in shuffle for a

long period, mainly waiting for the outputs

from the map tasks. Consequently, system

resources are underutilized. For example, we

tracked the CPU utilizations of each task in

a slave node every 5 seconds and Table 1

shows part of the records in one of such

overlapping periods. At each moment, the

overall CPU utilization (i.e., the summation

of CPU utilizations of the four tasks) is

much less than 400%, for a node with 4

cores. We then notice that when we assign

more slots to map tasks, e.g., with the slot

ratio of 3:1, each job experiences a shorter

map phase and most of its reduce phase

overlaps with the following job’s map

phase, see Fig. 2(b). The average CPU

utilization is also increased by 20%

compared to those under the the slot ratio of

2:2. It implies that for map-intensive jobs

like Classification, one should assign more

resources (slots) to map tasks in order to

improve the performance in terms of

makespan.

Case 2: In this case, we turn to consider

reduceintensive applications by submitting

three Grep jobs to scan the 10 GB movie

rating data. Similar to case 1, we also

investigate three static slot configurations.

TABLE 1

Real time CPU utilizations of each task on a

slave node in the overlapping time period of

a job’s map and reduce phases. The slot

ratio per node is 2:2.

First, we observe that each job takes a

longer time to process its reduce phase than

its map phase when we have 2 map and 2

reduce slots per node, see Fig. 3(a). Based

on the observation in case 1, we expect a

reduced makespan when assigning more

slots to reduce tasks, e.g., with the slot ratio

of 1:3. However, the experimental results

show that the makespan under this slot ratio

setting (1:3) becomes even longer than that

under the setting of 2:2, see the right column

of Fig. 1. We then look closely at the

corresponding task execution times, see Fig.

3(b). We find that the reduce tasks indeed

have excess slots such that the reduce phase

of each job startstoo early and wastes time

waiting for the output from its map phase. In

fact, a good slot ratio should be setbetween

2:2 and 1:3 to enable each job’s reduce

phase to fully overlap with the following

job’s map phase rather than its own map

phase.In summary, in order to reduce the

makespan of a batch of jobs, more resources

(or slots) should be assigned to map (resp.

reduce) tasks if we have map (resp. reduce)

intensive jobs. On the other hand, a simple

adjustment in such slot configurations is not

enough. An effective approach should tune

the slot assignments such that the execution

times of map and reduce phases can be well

balanced and the makespan of a given set

can be reduced to the end.

3 SYSTEM MODEL AND STATIC

SLOT CONFIGURATION

In this section, we present a homogeneous

Hadoop system model we considered and

1 14% 109% 26% 0%

6 103% 93% 0% 4%

11 93% 99% 8% 0%

16 100% 100% 0% 0%

Time(

sec)

ProcessId/TaskType

3522/

map

3564/

map

3438/re

duce

3397/re

duce

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 195

formulate the problem. In addition, we

analyze the default static slot configuration

in Hadoop and present an algorithm to

derive the best configuration.

 Problem Formulation

In our problem setting, we consider that a

Hadoop cluster consisting of k nodes has

received a batch of n jobs for processing.

We use J to represent the set of jobs, J =

f[j1; j2; : : : ; jn]. Each job ji is configured

with nm(i) map tasks and nr(i) reduce tasks.

Let st(i) and ft(i) indicate the start time and

the finish timeof job ji, respectively. The

total slots number in the Hadoop cluster is

equal to S, and let sm and sr be the number

of map slots and reduce slots, respectively.

We then have S = sm + sr. In this paper, our

objective is to develop an algorithm to

dynamically tune the parameters of sm and

sr, given a fixed value of S, in order to

minimize the makespan of the given batch

of jobs, i.e., minimizefmaxfft(i); 8i 2 [1;

n]gg. Table 2 lists important notations that

have been used in the rest of this paper.

TABLE 2

Notations used in this paper.

In a Hadoop system, makespan of multiple

jobs also depends on the job scheduling

algorithm which is coupled with our solution

of allocating the map and reduce slots on

each node. In this paper, we only consider

using the default FIFO (First-In-First-Out)

job scheduler because of the following two

reasons. First, given n jobs waiting for

service, the performance of FIFO is no

worse than other schedulers in terms of

makespan. In the example of “Case 2”
mentioned in Section 2, the makespan under

FIFO is 594 sec while Fair, an alternative

scheduler in Hadoop, consumes 772 sec to

finish jobs. Second, using FIFO simplifies

the performance analysis because generally

speaking, there are fewer concurrently

running jobs at any time. Usually two jobs,

with one in map phase and the other in

reduce phase.

Furthermore, we use execution time to

represent the workload of each job. As a

MapReduce job is composed of two phases,

we define wm(i) and wr(i) as the workload

of map phase and reduce phase in job ji,

respectively. We have developed solutions

with and without the prior knowledge of the

workload and we will discuss how to obtain

this information later.

 Static Slot Configuration withWorkload

Information

First, we consider the scenario that the

workload of a job is available and present

the algorithm for staticslot configuration

which is default in a Hadoop system.

Fig. 3. Task execution times of a batch of

Grep jobs under different static slot

configurations, where each node has (a) 2

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 196

map slots and 2 reduce slots, and (b) 1 map

slot and 3 reduce slots.

Basically, the Hadoop cluster preset the

values of sm and sr under the constraint of S

= sm + sr before executing the batch of jobs,

and the slot assignment will not be changed

during the entire process. We have

developed the following Algorithm 1 to

derive the optimal values of sm and sr.

Our algorithm and analysis are based on an

observation that the time needed to finish

the workload of map or reduce phase is

inversely proportional to the number of slots

assigned to the phase in a homogeneous

Hadoop cluster. Given sm and sr, the map

(resp. reduce) phase of ji needs

nm(i)sm(resp. nr(i) sr) rounds to finish. In

each round, sm map tasks or sr reduce tasks

are processed in parallel and the time

consumed is equal to the execution time of

one map or one reduce task. Let tm(i) and

tr(i) be the average execution time for a map

task and a reduce task, respectively. The

workloads of map and reduce phases are

defined as

wm(i) = nm(i) _ tm(i);wr(i) = nr(i) _ tr(i):

(1)

Algorithm 1 can derive the best static setting

of sm and sr given the workload

information. The outer loop (lines 1–10) in

the algorithm enumerates the value of sm

and sr (i.e., Ssm). For each setting of sm and

sr, the algorithm first calculates the

workload (wm(i) and wr(i)) for each job ji in

lines 3–5. The second inner loop (lines 6–8)

is to calculate the finish time of each job.

Under the FIFO policy, there are at most

two concurrently running jobs in the Hadoop

cluster. Each job’s map or reduce phase

cannot start before the precedent job’s map

or reduce phase is finished. More

specifically, the start time of map tasks of

job ji, i.e., st(i), is the finish time of ji1’s
map phase, i.e., st(i) = st(i . 1) + wm(i.1) sm

. Additionally, the start time of ji’s reduce

phase should be no earlier than both the

finish time of ji’s map phase and the finish

time of ji.1’s reduce phase. Therefore, the

finish time of ji is ft(i) = max(st(i) + wm(i)

sm; ft(i . 1)) + wr(i) sr . Finally, the

variables Opt SM and Opt MS keep track of

the optimal value of sm and the

corresponding makespan (lines 9–10), and

the algorithm returns Opt SM and S Opt SM

as the values for sm and sr at the end. The

time complexity of the algorithm is O(S.n).

4 DYNAMIC SLOT CONFIGURATION

UNDER HOMOGENEOUS

ENVIRONMENTS

As discussed in Section 2, the default

Hadoop cluster uses static slot configuration

and does not perform well for varying

workloads. The inappropriate setting of sm

and sr may lead to extra overhead because of

the following two cases: (1) if job ji’s map

phase is completed later than job ji1’s
reduce phase, then the reduce slots will be

idle for the interval period of

(st(i)+wm(i))ft(i1), see Fig. 4(a); (2) if job

ji’s map phase is completed earlier than the

job ji1’s reduce phase, then ji’s reduce

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 197

tasks have to wait for a period of ft(i 1)
(st(i) + wm(i)) until reduce

slots are released by ji1, see Fig. 4(b). In

this section, we present our solutions that

dynamically allocate the slots to map and

reduce tasks during the execution of jobs.

The architecture of our design is shown in

Fig. 5. In dynamic slot configuration, when

one slot becomes available upon the

completion of a map or reduce task, the

Hadoop system will reassign a map or

reduce task to the slot based on the cPurrent

optimal values of sm and sr. There are

totally i2[1;n](nm(i) + nr(i)) tasks and at the

end of each task, Hadoop needs to decide

the role of the available slot (either a map

slot or a reduce slot). In this setting, In this

section, we present our solutions that

dynamically allocate the slots to map and

reduce tasks during the execution of jobs.

The architecture of our design is shown in

Fig. 5. In dynamic slot configuration, when

one slot becomes available upon the

completion of a map or reduce task, the

Hadoop system will reassign a map or

reduce task to the slot based on the cPurrent

optimal values of sm and sr. There are

totally i2[1;n](nm(i) + nr(i)) tasks and at the

end of each task, Hadoop needs to decide

the role of the available slot (either a map

slot or a reduce slot). In this setting,

therefore, we cannot enumerate all the

possible values of sm and sr (i.e., 2 P I

(nm(i)+nr(i)) combinations) as in Algorithm

1. Instead, we modify our objective in the

dynamic slot configuration as there is no

closed-form expression of the makespan.

Fig. 4. Illustration of aligning the map and

reduce phases. (a) and (b) are the two

undesired cases mentioned above, and our

goal is to achieve (c).Our goal now is, for

the two concurrently running jobs (one in

map phase and the other in reduce phase), to

minimize the completion time of these two

phases. Our intuition is to eliminate the two

undesired cases mentioned above by

aligning the completion of ji’s map phase

and ji1’s reduce phase, see Fig. 4(c).

Briefly, we use the slot assignment as a

tunable knob to change the level of

parallelism of map or reduce tasks. When

we assign more map slots, map tasks obtain

more system resources and could be finished

faster, and vice versa for reduce tasks. In the

rest of this section, we first present our basic

solution with the prior knowledge of job

workload. Then, we describe how to

estimate the workload in practice when it is

not available. In addition, we present a

feedback control-based solution to provide

more accurate estimation of the workload.

Finally, we discuss the design of task

scheduler in compliance with our solution.

Fig. 5. The architecture overview of our

design. The shade rectangles indicate our

new/modified components in Hadoop.

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 198

5 Workload Estimation

Our solution proposed above depends on

prior knowledge of workload information. In

practice, workload can be derived from job

profiles, training phase, orother empirical

settings. In some applications, however,

workload information may not be available

or accurate. In this subsection, we present a

method that estimates the workload during

the job execution without any prior

knowledge.We use w0 m and w0 r to

represent the remaining workload of a map

or reduce phase, i.e., the summation of

execution time of the unfinished map or

reduce tasks. Note that we only track the

map/reduce workloads of running jobs, but

not the jobs waiting in the queue. Basically,

the workload is calculated as the

multiplication of the number of remaining

tasks and the average task execution time of

a job. Specifically, when a map or reduce

task is finished, the current workload

information needs to be updated, as shown

in Algorithm 2, where n0 m(i)/ n0 r(i) is the

number of unfinished map/reduce tasks of

job ji, and tm(i)/ tr(i) means the average

execution time of finished map/reduce tasks

from ji. Note that the execution time of each

finished task is already collected and

reported to the JobTracker in current

Hadoop systems. In addition, we use the

Welford’s one pass algorithm to calculate

the average of task execution times, which

incurs very low overheads on both time and

memory space.

6 Slot Assigner

The task assignment in Hadoop works in a

heartbeat fashion: the TaskTrackers report

slots occupation situation to the JobTracker

with heartbeat messages; and the JobTracker

selects tasks from the queue and assigns

them to free slots. There are two new

problems need to be addressed when

assigning tasks under TuMM. First, slots of

each type should be evenly distributed

across the slave nodes. For example, when

we have a new slot assignment sm = 5; sr =

7 in a cluster with 2 slave nodes, a 2:3/4:3

map/reduce slots distribution is better than

the 1:4/5:2 map/reduce slots distribution in

case of resource contention. Second, the

currently running tasks may stick with their

slots and therefore the new slot assignments

may not be able to apply immediately.

To address these problems, our slot

assignment module (SA) takes both the slots

assignment calculated through Eq. 6-7 and

the situation of currently running tasks into

consideration when assigning tasks.

The process of SA is shown in Algorithm 3.

The SA first calculates the map and reduce

slot assignments of slave node x (line 1),

indicated by sm(x) and sr(x), based on the

current values of sm and sr and the number

of running tasks in cluster. We use the floor

function since slots assignments on each

node must be integers. Due to the flooring

operation, the assigned slots (sm(x)+sr(x))

on node x may be fewer than the available

slots (S=k). In lines 3–6, we increase either

sm(x) or sr(x) to compensate slot

assignment. The decision is based on the

deficit of current map and reduce slots (line

3), where sm/ sr represent our target

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 199

assignment and rtm/ rtr are the number of

current running map/reduce tasks.

Eventually, we assign a task to the available

slot in lines 7–10. Similarly, the decision is

made by comparing the deficit of map and

reduce tasks on node x, where sm(x)/ sr(x)

are our target assignment and rtm(x)/ rtr(x)

are the numbers of running tasks.

7 CONCLUSION

In this paper, we supplied a unique slot

management scheme, named TuMM, to

allow dynamic slot configuration in Hadoop.

The principal goal of TuMM is to improve

aid utilization and decrease the makespan of

more than one jobs. To meet this goal, the

provided scheme introduces important

components: Workload Monitor periodically

tracks the execution facts of lately

completed obligations and estimates the

present workloads of map and reduce tasks

and Slot Assigner dynamically allocates the

slots to map and decrease responsibilities

with the aid of leveraging the anticipated

workload statistics. We similarly prolonged

our scheme to manipulate assets (slots) for

heterogeneous clusters. The new edition of

our scheme, named H TuMM, reduces the

makespan of a couple of jobs by means of

one at a time placing the slot assignments

for the node in a heterogeneous cluster. We

carried out TuMM and H TuMM on the top

of Hadoop v0.20.2 and evaluated each

schemes with the aid of going for walks

representative MapReduce benchmarks and

TPC-H question units in Amazon EC2

clusters. The experimental effects exhibit up

to twenty-eight% reduction in the

makespans and 20% increase in resource

utilizations. The effectiveness and the

robustness of our new slot control schemes

are demonstrated under both homogeneous

and heterogeneous cluster environments.

In the future, we are able to similarly

investigate the most fulfilling overall slot

quantity configuration within the slot based

totally Hadoop platform in addition to the

useful resource control policy in subsequent

generation Hadoop YARN structures.

Reference

[1].Apache Hadoop. [Online].

Available: http://hadoop.apache.org/

[2].M. Zaharia, D. Borthakur, J. S.

Sarma et al., “Delay scheduling:A

simple technique for achieving

locality and fairness in cluster

scheduling,” in EuroSys’10, 2010.

[3].A. Verma, L. Cherkasova, and R. H.

Campbell, “Two sides of a coin:

Optimizing the schedule of

mapreduce jobs to minimize their

makespan and improve cluster

performance,” in MASCOTS’ 12,

Aug 2012.

[4].M. Isard, Vijayan Prabhakaran, J.

Currey et al., “Quincy:

fairscheduling for distributed

computing clusters,” in SOSP’09,

2009,pp. 261–276.

[5]. A. Verma, Ludmila Cherkasova, and

R. H. Campbell, “Aria:Automatic

http://hadoop.apache.org/

Vol 08 Issue01, Jan 2019 ISSN 2456 – 5083 Page 200

resource inference and allocation for

mapreduce environments,”in

ICAC’11, 2011, pp. 235–244.

[6]. J. Polo, D. Carrera, Y. Becerra et al.,

“Performance-driven task

coschedulingfor mapreduce

environments,” in NOMS’10, 2010.

[7].V. K. Vavilapalli, A. C. Murthy, C.

Douglas, S. Agarwal, M. Konar,R.

Evans, T. Graves, J. Lowe, H. Shah,

S. Seth et al., “Apachehadoop yarn:

Yet another resource negotiator,” in

Proceedings ofthe 4th annual

Symposium on Cloud Computing.

ACM, 2013, p. 5.

[8].X. W. Wang, J. Zhang, H. M. Liao,

and L. Zha, “Dynamic splitmodel of

resource utilization in mapreduce,”
in DataCloud-SC ’11,2011.

	PILLARI BHARGAVI, P NAGESWARA RAO
	1PILLARI BHARGAVI, 2P NAGESWARA RAO
	1 INTRODUCTION
	2 MOTIVATION
	3 SYSTEM MODEL AND STATIC SLOT CONFIGURATION
	Problem Formulation
	Static Slot Configuration withWorkload Information
	4 DYNAMIC SLOT CONFIGURATION UNDER HOMOGENEOUS ENVIRONMENTS
	5 Workload Estimation
	6 Slot Assigner
	7 CONCLUSION
	Reference

