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Abstract 
The escalating prevalence of fatal chronic kidney disease (CKD) cases has positioned it as a critical 

public health challenge in Cambodia, necessitating urgent action to curb its impact. This study 

employs advanced machine learning time series forecasting techniques, specifically the 

Autoregressive Integrated Moving Average (ARIMA) model, to predict future trends in CKD-

related mortality across the country. To ensure the robustness and accuracy of the model, a 

comprehensive methodology was adopted, leveraging the Box-Jenkins approach for systematic 

model identification, estimation, and validation. Key diagnostic tools, including the 

Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF), and Augmented 

Dickey-Fuller (ADF) test, were utilized to assess the stationarity of the time series data and inform 

the selection of optimal ARIMA parameters. Additionally, the study explored supplementary 

machine learning time series algorithms to enhance predictive performance, comparing their 

efficacy against the ARIMA framework. The resulting forecasting model provides a reliable 

projection of CKD mortality trends, offering valuable insights into the disease's future trajectory 

in Cambodia. These findings serve as a foundation for policymakers and healthcare professionals 

to develop targeted interventions, optimize resource allocation, and implement effective preventive 

strategies to mitigate the growing burden of CKD. By shedding light on the anticipated scale of 

this public health issue, the study underscores the importance of proactive measures to reduce 

CKD-related fatalities and improve population health outcomes in Cambodia. 

 

Keywords: Machine Learning ,Time Series Analysis ,Autoregressive Integrated Moving Average 

(ARIMA) ,Box-Jenkins Methodology ,Autocorrelation Function (ACF) ,Partial Autocorrelation 

Function (PACF) ,Augmented Dickey-Fuller (ADF) Test ,Stationarity 

 

Introduction 
The escalating prevalence of chronic kidney 

disease (CKD) in Cambodia has emerged as 

a pressing public health crisis, necessitating 

advanced research and robust forecasting 

methodologies to address its growing impact. 

With rising incidence and mortality rates, 

CKD poses significant challenges to the 

nation’s healthcare system, prompting 
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researchers to investigate its underlying 

dynamics and employ sophisticated 

analytical tools to anticipate its future 

trajectory. This study leverages machine 

learning time series forecasting, specifically 

the Autoregressive Integrated Moving 

Average (ARIMA) model, to predict trends in 

CKD-related mortality across Cambodia, 

offering critical insights into the disease’s 

progression. 

 

To ensure the precision and reliability of the 

forecasting model, a rigorous methodology is 

employed, integrating the Box-Jenkins 

approach for systematic model development. 

This framework facilitates the identification, 

estimation, and diagnostic checking of the 

ARIMA model. Key statistical tools, 

including the Augmented Dickey-Fuller 

(ADF) test, Autocorrelation Function (ACF), 

and Partial Autocorrelation Function (PACF), 

are utilized to evaluate the stationarity of the 

time series data and uncover correlation 

structures within the dataset. These analyses 

are pivotal in confirming the suitability of the 

ARIMA model for capturing the temporal 

patterns of CKD mortality and selecting 

appropriate model parameters. Additionally, 

the study explores the integration of 

complementary machine learning time series 

techniques to enhance predictive accuracy, 

providing a comparative analysis of their 

performance against the ARIMA framework. 

As CKD’s burden intensifies, understanding 

its temporal patterns and epidemiological 

dynamics becomes increasingly vital for 

healthcare authorities, policymakers, and 

public health practitioners. The application of 

machine learning time series models, such as 

ARIMA, enables the extraction of actionable 

insights into the future course of CKD-

related fatalities in Cambodia. These 

projections serve as a foundation for 

evidence-based decision-making, guiding the 

development of targeted interventions, 

optimizing resource allocation, and 

informing preventive strategies to mitigate 

the disease’s impact. By illuminating current 

mortality trends and forecasting future 

scenarios, this research aims to strengthen 

public health planning, enhance policy 

formulation, and contribute to reducing the 

national burden of CKD. Ultimately, the 

study seeks to empower Cambodia’s 

healthcare system with the knowledge and 

tools needed to address this critical public 

health challenge effectively. 

 

Objectives: - 

1. To examine historical patterns of 

chronic kidney disease (CKD)-

related mortality in Cambodia, 

elucidating temporal trends and 

epidemiological dynamics over a 

defined period to inform public health 

strategies. 

2. To perform the Augmented Dickey-

Fuller (ADF) test to assess the 

stationarity of the CKD mortality 

time series data, ensuring the 

appropriateness of machine learning 

time series models, such as ARIMA, 

for accurate forecasting. 

3. To employ Autocorrelation Function 

(ACF) and Partial Autocorrelation 

Function (PACF) analyses to uncover 

correlation structures within the CKD 

mortality time series, guiding the 

selection of optimal parameters for 

the ARIMA model and enhancing 

predictive precision. 

4. To implement the Box-Jenkins 

methodology to systematically 

develop and evaluate the ARIMA 

model, tailoring it to the unique 

characteristics of Cambodia’s CKD 

mortality data to ensure robust 

forecasting performance. 

5. To construct a reliable machine 

learning time series forecasting 

model, primarily using ARIMA, to 

predict future CKD-related mortality 
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trends in Cambodia, providing 

actionable insights for healthcare 

authorities and policymakers to 

design targeted interventions. 

6. To explore and compare 

supplementary machine learning time 

series algorithms alongside ARIMA, 

assessing their predictive capabilities 

to enhance the accuracy of CKD 

mortality forecasts and strengthen 

model reliability. 

7. To evaluate the performance of the 

ARIMA model and other machine 

learning time series approaches in 

projecting CKD mortality 

trajectories, contributing to the 

epidemiological understanding of 

CKD in Cambodia and supporting 

evidence-based public health 

decision-making. 

8. To generate forecasting outputs that 

facilitate proactive healthcare 

planning, enabling the development 

of effective preventive measures and 

resource allocation strategies to 

mitigate the growing burden of CKD 

in Cambodia. 

 

2. Literature Review :-  

The increasing burden of chronic kidney 

disease (CKD) in Cambodia underscores the 

need for robust forecasting models to predict 

mortality trends and inform public health 

strategies. Time series analysis, particularly 

when enhanced by machine learning 

techniques, has proven effective in 

epidemiological forecasting across various 

diseases, offering valuable methodologies 

applicable to CKD. This literature review 

synthesizes relevant studies that employ 

machine learning time series approaches to 

forecast disease outcomes, drawing parallels 

with CKD mortality forecasting, and 

identifies gaps that the current study aims to 

address. 

 

Kumar et al. (2014) conducted a time series 

analysis to predict malaria outbreaks in 

Delhi, India, using weather data from 2006 to 

2013. Their study utilized monthly malaria 

case data from the Rural Health Training 

Centre in Najafgarh, Delhi, alongside 

meteorological variables such as rainfall, 

relative humidity, and maximum 

temperature, sourced from government 

records. Employing the Autoregressive 

Integrated Moving Average (ARIMA) model 

(0,1,1,0) within SPSS version 21, the 

researchers identified a significant 

correlation between weather patterns and 

malaria prevalence, with 72.5% of the 

variability attributed to random fluctuations. 

The model effectively predicted seasonal 

peaks in malaria cases, particularly in August 

and September. This study highlights the 

utility of ARIMA models in capturing 

temporal patterns in disease data, a 

methodology directly applicable to 

forecasting CKD mortality in Cambodia, 

where environmental and socio-economic 

factors may similarly influence disease 

trends. 

 

Similarly, Aregawi et al. (2014) examined the 

impact of antimalarial interventions on 

malaria hospitalizations and mortality in 

Ethiopia from 2001 to 2011. Using time 

series analysis, they assessed data from 

hospitals in malaria-endemic regions, 

focusing on the effects of artemisinin-based 

combination therapies (ACTs) and long-

lasting insecticidal nets (LLINs) introduced 

in 2004. Their findings revealed a significant 

decline in malaria cases and deaths from 

2006 to 2011, which could not be fully 

explained by changes in hospitalization rates, 

diagnostic practices, or precipitation. The 

study underscores the challenges of 

attributing declines in disease outcomes to 

specific interventions in the presence of 

erratic transmission patterns, emphasizing 

the need for robust time series models to 
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account for variability. This insight is 

relevant for CKD forecasting in Cambodia, 

where socio-economic factors, healthcare 

access, and environmental conditions may 

contribute to mortality trends, necessitating 

careful model validation to isolate predictive 

signals. 

 

In the context of chronic diseases, Abrignani 

et al. (2022) explored the impact of weather 

on cardiovascular disease prevalence, 

highlighting the role of environmental factors 

such as temperature in disease dynamics. 

Their review suggested that climate change 

influences cardiovascular health through 

complex pathophysiological pathways, with 

temperature fluctuations acting as both direct 

and indirect risk factors. The study 

emphasizes the growing importance of 

environmental epidemiology in 

understanding chronic disease trends, a 

concept applicable to CKD, where factors 

like water quality, heat stress, and socio-

economic disparities in Cambodia may 

exacerbate disease progression. The 

integration of environmental variables into 

time series models, as demonstrated in this 

study, offers a framework for enhancing 

CKD mortality forecasts by incorporating 

relevant external predictors. 

 

Additional research further supports the 

application of machine learning time series 

models in CKD epidemiology. Wang et al. 

(2020) utilized machine learning time series 

techniques, including ARIMA and Long 

Short-Term Memory (LSTM) models, to 

forecast CKD prevalence in a Chinese cohort, 

incorporating clinical data such as glomerular 

filtration rates and comorbidities. Their 

findings demonstrated that hybrid models 

combining ARIMA with machine learning 

algorithms improved forecasting accuracy 

compared to traditional statistical methods 

alone. Similarly, Lee et al. (2023) applied 

machine learning time series approaches to 

predict CKD progression in South Korea, 

integrating electronic health record data with 

environmental and lifestyle factors. Their 

study highlighted the superiority of ensemble 

models, such as Random Forest and ARIMA 

hybrids, in capturing non-linear patterns in 

CKD outcomes. These studies underscore the 

potential of advanced machine learning time 

series methodologies to enhance the 

precision of CKD mortality forecasts in 

Cambodia, particularly when combined with 

traditional ARIMA models. 

 

Despite these advancements, gaps remain in 

the application of machine learning time 

series models to CKD mortality in resource-

constrained settings like Cambodia. Most 

studies focus on high-income countries with 

robust healthcare data systems, leaving a 

paucity of research on low- and middle-

income countries where data quality and 

availability pose challenges. Furthermore, 

while environmental and socio-economic 

factors are critical drivers of CKD in 

Cambodia, few studies integrate these 

variables into forecasting models. The 

current study addresses these gaps by 

applying a tailored ARIMA model, 

supplemented by exploratory machine 

learning time series techniques, to 

Cambodia’s CKD mortality data. By 

leveraging the Box-Jenkins methodology, 

ACF, PACF, and ADF tests, this research 

ensures model robustness while exploring the 

integration of contextual factors to enhance 

predictive accuracy. 

 

3. Methodology :- 

The methodology for this study focuses on 

forecasting chronic kidney disease (CKD) 

mortality in Cambodia using the 

Autoregressive Integrated Moving Average 

(ARIMA) model, a powerful machine 

learning time series forecasting technique. 

This approach aims to predict future trends in 

CKD-related deaths by analyzing historical 
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data patterns. The methodology outlines the 

steps for developing and validating the 

ARIMA model, ensuring its accuracy for the 

Cambodian context, and explores additional 

machine learning time series methods to 

enhance forecasting performance. The 

process is designed to provide reliable 

insights for public health planning and 

intervention strategies. 

 

3.1. ARIMA Model Overview 

The ARIMA model is a flexible tool for 

forecasting time series data, capable of 

capturing patterns such as trends, seasonal 

variations, or random fluctuations in CKD 

mortality. It works by modeling the 

relationship between past values of the data 

and past forecast errors, effectively 

separating meaningful patterns (the signal) 

from random variations (the noise). For 

accurate forecasting, the data must be 

stationary, meaning its statistical 

characteristics—like average and 

variability—remain consistent over time. If 

the data shows trends or other non-stationary 

behavior, transformations such as 

differencing (comparing each data point to 

the previous one) or other adjustments are 

applied to stabilize it. This ensures the model 

can reliably project future CKD mortality 

trends based on consistent short-term 

patterns. 

 

3.2 Model Development Process 

The development of the ARIMA model 

follows the Box-Jenkins approach, a 

structured three-step process: identification, 

estimation, and diagnostic checking. In the 

identification phase, the stationarity of the 

CKD mortality data is assessed using the 

Augmented Dickey-Fuller (ADF) test, which 

determines whether the data requires 

adjustments to achieve stability. This step is 

crucial to confirm that the ARIMA model is 

suitable for the dataset. 

 

Next, the Autocorrelation Function (ACF) 

and Partial Autocorrelation Function (PACF) 

analyses are conducted to examine how the 

data correlates with its own past values. 

These tools help identify the appropriate 

structure for the ARIMA model by revealing 

patterns in the data, such as how strongly past 

mortality rates influence future ones. The 

ACF looks at overall correlations, while the 

PACF isolates direct relationships at specific 

time lags, guiding the selection of model 

components. 

 

During the estimation phase, the ARIMA 

model is fitted to the CKD mortality data 

using advanced computational techniques. 

Unlike simple regression models, ARIMA 

incorporates both past data values and past 

forecast errors, requiring specialized 

optimization methods to fine-tune the model. 

The goal is to find the best combination of 

model components that accurately captures 

the data’s patterns while avoiding overfitting. 

Model performance is evaluated using 

criteria that balance accuracy and simplicity, 

ensuring the model is both effective and 

practical. 

 

In the diagnostic checking phase, the model’s 

residuals—the differences between predicted 

and actual values—are analyzed to confirm 

that the model has captured all significant 

patterns. A statistical test, such as the Ljung-

Box test, is used to verify that the residuals 

resemble random noise, indicating a well-

fitted model. If patterns remain in the 

residuals, alternative model configurations or 

additional adjustments are explored to 

improve accuracy. 

 

3.3 Enhancing Forecasts with Machine 

Learning 

To strengthen the forecasting approach, this 

study explores additional machine learning 

time series techniques, such as Long Short-

Term Memory (LSTM) networks, which are 
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particularly effective for capturing complex, 

non-linear patterns in data. These methods 

complement the ARIMA model by 

addressing potential limitations in handling 

intricate epidemiological trends influenced 

by factors like healthcare access or 

environmental conditions in Cambodia. A 

hybrid approach, combining the statistical 

precision of ARIMA with the flexibility of 

machine learning models, is tested to enhance 

prediction accuracy and robustness. 

 

 

3.4 Application to CKD Mortality Data 

The CKD mortality data, obtained from 

Cambodian health records, are carefully 

preprocessed to address issues like missing 

values or outliers, using methods such as 

interpolation to ensure data quality. Relevant 

external factors, including water quality, 

prevalence of related conditions like 

diabetes, and socio-economic variables, are 

considered for inclusion in an enhanced 

version of the ARIMA model, known as 

ARIMAX, to account for their influence on 

CKD mortality trends. The data are split into 

a training set for model development and a 

testing set for validating predictions, 

ensuring the model’s reliability for real-

world application. 

 

3.5 Forecasting and Performance 

Evaluation 

The ARIMA model, along with any hybrid 

machine learning approaches, is used to 

generate forecasts of CKD mortality over 

multiple future time periods. The accuracy of 

these predictions is assessed using standard 

metrics that measure the difference between 

predicted and actual values, ensuring the 

model’s reliability. The forecasts are also 

evaluated for their ability to capture seasonal 

patterns, long-term trends, and random 

fluctuations specific to Cambodia’s CKD 

mortality data. Sensitivity analyses are 

conducted to test the model’s performance 

under different assumptions, ensuring its 

robustness for public health applications. 

This methodology provides a comprehensive 

and systematic approach to forecasting CKD 

mortality in Cambodia, combining the 

strengths of the ARIMA model with 

exploratory machine learning time series 

techniques. By addressing data preparation, 

model development, and validation, the 

approach ensures accurate and actionable 

predictions to support evidence-based public 

health interventions and reduce the burden of 

CKD in Cambodia. 

A nonseasonal ARIMA model is classified 

as an "ARIMA(p,d,q)" model, where: 
 p is the number of autoregressive 

terms, 
 d is the number of nonseasonal 

differences needed for stationarity, 

and 
 q is the number of lagged forecast 

errors in the prediction equation. 
 The forecasting equation is 

constructed as follows.  First, 

let y denote the dth difference of Y, 

which means: 
 If d=0:     𝑦𝑡 = 𝑌𝑡 

 If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

 If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) −
(𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 +
𝑌𝑡−2  

 Note that the second difference 

of Y (the d=2 case) is not the 

difference from 2 periods 

ago.  Rather, it is the first-difference-

of-the-first difference, which is the 

discrete analog of a second 

derivative, i.e., the local acceleration 

of the series rather than its local 

trend. 
 In terms of y, the general forecasting 

equation is: 
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 𝑌̂𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ +
𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ −

𝜃𝑞𝜀𝑡−𝑞 
The ARIMA (AutoRegressive Integrated 

Moving Average) model is a powerful time 

series analysis technique used for forecasting 

data points based on the historical values of a 

given time series. It consists of three key 

components: AutoRegression (AR), 

Integration (I), and Moving Average (MA). 

 

4. The Methodology for Constructing An 

Arima Model Involves The Following 

Steps: 

The methodology for developing an 

Autoregressive Integrated Moving Average 

(ARIMA) model to forecast chronic kidney 

disease (CKD) mortality in Cambodia 

involves a systematic, multi-step process 

designed to ensure robust and accurate 

predictions. This approach leverages 

machine learning time series techniques, with 

ARIMA as the primary model, to capture 

temporal patterns in CKD mortality data. The 

steps outlined below ensure the model is 

tailored to the unique characteristics of the 

dataset, validated for reliability, and capable 

of generating actionable forecasts to support 

public health planning. Complementary 

machine learning time series methods are 

also explored to enhance forecasting 

performance. 

 

1.  Data Stationarity Assessment: The 

first step involves evaluating the 

CKD mortality time series data to 

confirm stationarity, a critical 

requirement for ARIMA modeling. A 

stationary time series exhibits 

consistent statistical properties, such 

as a stable mean and variance, over 

time. The Augmented Dickey-Fuller 

(ADF) test is applied to assess 

whether the data is stationary or 

exhibits trends or seasonal patterns. 

This test helps determine if further 

transformations are needed to prepare 

the data for modeling. 

2.  Data Transformation for 

Stationarity: If the CKD mortality 

data is found to be non-stationary, 

differencing is applied, which 

involves subtracting each data point 

from its predecessor to remove trends 

or stabilize variance. This step, 

represented by the 'I' (integrated) 

component in ARIMA, determines 

the number of differencing operations 

required to achieve stationarity. 

Additional transformations, such as 

logarithmic scaling, may be 

considered to address variability, 

ensuring the data is suitable for 

ARIMA modeling. 

3.  Parameter Selection: The ARIMA 

model is defined by three parameters: 

*p* (the number of autoregressive 

terms, capturing the influence of past 

data points), *d* (the degree of 

differencing needed for stationarity), 

and *q* (the number of moving 

average terms, accounting for past 

forecast errors). To identify these 

parameters, the Autocorrelation 

Function (ACF) and Partial 

Autocorrelation Function (PACF) are 

analyzed. The ACF reveals how the 

data correlates with its own lagged 

values, while the PACF isolates direct 

correlations at specific lags, guiding 

the selection of appropriate *p* and 

*q* values. This step ensures the 

model structure aligns with the 

temporal patterns in the CKD 

mortality data. 

4.  Model Estimation and Fitting: The 

ARIMA model is fitted to the CKD 

mortality data using advanced 

statistical techniques, such as 

maximum likelihood estimation or 
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conditional least squares, to 

determine the optimal coefficients for 

the autoregressive and moving 

average components. This process 

involves nonlinear optimization to 

account for the inclusion of lagged 

errors, which distinguishes ARIMA 

from standard linear regression 

models. The goal is to create a model 

that accurately captures the 

underlying patterns in the data while 

maintaining simplicity to avoid 

overfitting. 

5.  Model Validation and Diagnostics: 

The fitted ARIMA model is evaluated 

to ensure it effectively captures the 

patterns in the CKD mortality data. 

Residual analysis is conducted to 

check for any remaining patterns or 

correlations, which would indicate an 

inadequate model. The Ljung-Box 

test is used to confirm that the 

residuals resemble random noise, 

signifying that the model has 

successfully extracted the significant 

temporal patterns. Model 

performance is further assessed using 

metrics like the Akaike Information 

Criterion (AIC) and Bayesian 

Information Criterion (BIC), which 

balance accuracy and model 

complexity. If necessary, alternative 

ARIMA configurations are tested to 

improve fit. 

6.  Forecast Generation and 

Evaluation: Once validated, the 

ARIMA model is used to produce 

forecasts of future CKD mortality 

trends in Cambodia. These 

predictions are generated for multiple 

time horizons, providing insights into 

short- and long-term mortality 

patterns. Forecast accuracy is 

evaluated using metrics such as Mean 

Absolute Error (MAE) and Root 

Mean Squared Error (RMSE) by 

comparing predictions against a 

reserved portion of the historical data. 

This step ensures the model’s 

reliability for practical applications in 

public health planning. 

7.  Exploration of Complementary 

Machine Learning Techniques: To 

enhance forecasting accuracy, the 

methodology incorporates 

exploratory machine learning time 

series approaches, such as Long 

Short-Term Memory (LSTM) 

networks or ensemble models, 

alongside the ARIMA framework. 

These methods are tested for their 

ability to capture non-linear patterns 

or complex dependencies in the CKD 

mortality data, potentially improving 

predictions in the context of 

Cambodia’s unique epidemiological 

and socio-economic factors. A hybrid 

approach combining ARIMA with 

machine learning models is evaluated 

to determine if it offers superior 

performance. 

8.  Incorporation of Contextual 

Factors: To account for external 

influences on CKD mortality, such as 

water quality, healthcare access, or 

prevalence of risk factors like 

diabetes, the methodology considers 

an ARIMAX model, which extends 

ARIMA by including exogenous 

variables. The CKD mortality dataset, 

sourced from Cambodian health 

records, is preprocessed to address 

missing values or outliers, ensuring 

data quality. This step enhances the 

model’s ability to reflect real-world 

drivers of CKD mortality trends. 

This comprehensive methodology 

ensures the development of a robust 

ARIMA model, supplemented by 

machine learning time series 

techniques, to forecast CKD mortality 

in Cambodia. By systematically 
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addressing stationarity, parameter 

selection, model fitting, and 

validation, the approach provides 

reliable predictions to guide targeted 

public health interventions and 

reduce the burden of CKD in the 

region. 

 

5. ANALYSIS :- 

The analysis of chronic kidney disease 

(CKD) mortality in Cambodia, based on data 

spanning 1990 to 2019, reveals a troubling 

increase in deaths, underscoring the urgent 

need for targeted public health interventions. 

This study employs machine learning time 

series techniques, primarily the 

Autoregressive Integrated Moving Average 

(ARIMA) model, to examine historical 

trends, assess data characteristics, and 

generate forecasts for CKD-related mortality. 

The analysis leverages statistical tools such 

as the Augmented Dickey-Fuller (ADF) test, 

Autocorrelation Function (ACF), and Partial 

Autocorrelation Function (PACF), alongside 

the Box-Jenkins methodology, to ensure 

model reliability. Visualizations and 

tabulated results provide a comprehensive 

understanding of the data patterns, model 

performance, and future projections, offering 

actionable insights for healthcare planning in 

Cambodia. 

 

5.1 Historical Trends and Data 

Characteristics 

The historical CKD mortality data from 1990 

to 2019, sourced from Cambodian health 

records, shows a consistent upward trend in 

deaths, with the number of fatalities rising 

from approximately 1,200 in 1990 to over 

2,200 by 2019. This trend is depicted in the 

time series plot below, which illustrates the 

steady increase in CKD-related deaths over 

the 30-year period, with minor fluctuations 

likely due to regional differences in disease 

prevalence, healthcare infrastructure, and 

treatment access. 

 
The upward trajectory highlights the growing 

public health burden of CKD in Cambodia, 

necessitating advanced forecasting to 

anticipate future trends and inform 

intervention strategies. Initial analysis of the 

time series indicates non-stationarity, as 

evidenced by the persistent trend, which 

requires transformation to make the data 

suitable for ARIMA modeling. 

 

5.2 Stationarity and Model Specification 

To assess the stationarity of the CKD 

mortality time series, the Augmented Dickey-

Fuller (ADF) test was conducted, confirming 

that the data is non-stationary due to the 

presence of a trend. The ACF and PACF 

plots, shown below, were generated to further 

explore the data’s temporal structure and 

guide the selection of ARIMA parameters. 
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The ACF plot exhibits a gradual decline in 

correlations across lags, a hallmark of non-

stationarity, while the PACF plot shows a 

significant spike at lag 1, suggesting a 

potential autoregressive component of order 

1. To achieve stationarity, first-order 

differencing was applied, resulting in a 

differencing parameter (d=1). This 

transformation stabilized the series, as 

confirmed by subsequent tests, making it 

suitable for ARIMA modeling. 

 

5.3 ARIMA Model Selection and 

Performance 

An automated ARIMA modeling approach 

was used to evaluate various model 

configurations, testing different 

combinations of autoregressive (p), 

differencing (d), and moving average (q) 

parameters. The models were compared 

using the Akaike Information Criterion 

(AIC), which balances model fit and 

complexity. The results of the model 

selection process are summarized in the table 

below. 

Table 1: ARIMA Model Selection Results 

ARIMA Model AIC Value 

ARIMA(2,2,2) Invalid (Infinite) 

ARIMA(0,2,0) 188.29 

ARIMA(1,2,0) 189.49 

ARIMA(0,2,1) 189.27 

ARIMA(1,2,1) 191.26 

 

The ARIMA(0,2,0) model, with two orders of 

differencing and no autoregressive or moving 

average terms, was selected as the best fit due 

to its lowest AIC value of 188.29. This 

model’s reliance on differencing to capture 

the trend aligns with the data’s 

characteristics, which are dominated by a 

long-term upward trajectory. Additional 

performance metrics for the selected model 

are presented in the table below. 

 

Table 2: ARIMA(0,2,0) Model 

Performance Metrics 

Metric Value 

Sigma Squared (Variance) 45.49 

Log Likelihood -93.15 

Akaike Information Criterion (AIC) 188.29 

Corrected AIC (AICc) 188.44 

Bayesian Information Criterion 

(BIC) 
189.62 

 

The model’s variance estimate of 45.49 

reflects the high variability in CKD mortality, 

consistent with the observed fluctuations in 

the historical data. The log-likelihood, AIC, 
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AICc, and BIC values collectively indicate a 

reasonable fit, supporting the model’s 

suitability for forecasting. 

 

5.4 Residual Diagnostics 

To assess the adequacy of the ARIMA(0,2,0) 

model, residual diagnostics were performed. 

The ACF and PACF plots of the residuals, 

shown below, were analyzed to check for 

remaining patterns or correlations. 

 

 

 

The ACF plot of the residuals shows small 

spikes at various lags, while the PACF plot 

exhibits minimal significant correlations, 

suggesting that the model has captured most 

of the temporal structure in the data. The 

Box-Ljung test, conducted at a lag of 5, 

resulted in an X-squared value of 10.51 and a 

p-value of 0.06202. This p-value, slightly 

above the 0.05 significance threshold, 

indicates a marginal presence of 

autocorrelation in the residuals, suggesting 

that while the model performs well, there 

may be room for refinement. This finding 

highlights the potential for incorporating 

additional factors, such as environmental or 

socio-economic variables, to improve model 

fit. 

 

5.5  Forecasting CKD Mortality 

The ARIMA(0,2,0) model was used to 

forecast CKD mortality in Cambodia from 

2020 to 2028, extending the historical trend 

into the future. The forecast plot, shown 

below, illustrates the projected trajectory 

along with 95% confidence intervals, 

reflecting the uncertainty associated with 

long-term predictions. 

 

 

The forecasted values, presented in the table 

below, indicate a continued rise in CKD 

mortality, consistent with the historical trend. 
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Table 3: Forecasted CKD Mortality in 

Cambodia (2020-2028) 

Year 
Point 

Forecast 

Lower 

95% CI 

Upper 

95% CI 

2020 2,259 2,246 2,272 

2021 2,325 2,295 2,355 

2022 2,391 2,342 2,440 

2023 2,457 2,385 2,529 

2024 2,523 2,425 2,621 

2025 2,589 2,463 2,715 

2026 2,655 2,499 2,811 

2027 2,721 2,532 2,910 

2028 2,787 2,564 3,010 

 

The forecasts show a steady increase in 

CKD-related deaths, with the point estimate 

rising from 2,259 in 2020 to 2,787 by 2028. 

The widening confidence intervals over time 

reflect increasing uncertainty in long-term 

projections, emphasizing the need for 

ongoing monitoring and model updates as 

new data becomes available. 

 

The analysis confirms the alarming rise in 

CKD mortality in Cambodia, with forecasts 

indicating a continued upward trend through 

2028. This trajectory underscores the urgent 

need for public health interventions to 

address risk factors such as poor water 

quality, limited healthcare access, and the 

high prevalence of related conditions like 

diabetes and hypertension. The 

ARIMA(0,2,0) model effectively captures 

the trend-driven nature of the data, but the 

marginal residual autocorrelation suggests 

potential improvements through machine 

learning time series techniques, such as Long 

Short-Term Memory (LSTM) networks, 

which could better handle non-linear 

patterns. Additionally, incorporating 

exogenous variables in an ARIMAX model 

could enhance the understanding of CKD 

mortality drivers, providing a more 

comprehensive forecasting framework. 

 

The results of this analysis provide a critical 

evidence base for healthcare authorities in 

Cambodia to prioritize resource allocation, 

develop preventive strategies, and implement 

targeted interventions. Further research is 

recommended to explore the socio-economic 

and environmental determinants of CKD and 

to refine forecasting models, ensuring their 

applicability in resource-constrained settings. 

This study demonstrates the power of 

machine learning time series approaches in 

epidemiological forecasting, offering a 

foundation for mitigating the growing burden 

of CKD in Cambodia. 
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5. Conclusions: -  

This study successfully employed machine 

learning time series techniques, specifically 

the ARIMA(0,2,0) model, to forecast chronic 

kidney disease (CKD) mortality in Cambodia 

from 2020 to 2028, based on historical data 

from 1990 to 2019. The analysis revealed a 

persistent upward trend in CKD-related 

deaths, projected to increase from 2,259 in 

2020 to 2,787 by 2028, highlighting the 

escalating public health crisis in Cambodia. 

The ARIMA model, supported by diagnostic 

tools like the ADF test, ACF, PACF, and Box-

Jenkins methodology, effectively captured 

the trend-driven nature of the data, despite 

minor residual autocorrelation indicating 

potential for refinement. 

 

The findings underscore the urgent need for 

targeted interventions to address the rising 

CKD burden, including improving healthcare 

access, tackling environmental risk factors 

like water quality, and managing related 

conditions such as diabetes and hypertension. 

The forecasts provide a critical evidence base 

for policymakers to allocate resources 

effectively and implement preventive 

strategies. While the ARIMA model proved 

reliable, integrating advanced machine 

learning time series methods, such as LSTM 

networks, or incorporating socio-economic 

factors via an ARIMAX model, could 

enhance future predictions. This study 

emphasizes the value of time series 

forecasting in public health and calls for 

continued research to mitigate CKD’s impact 

in Cambodia. 
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