

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 3
rd

Aug 2019. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-08

Title EFFICIENT COMPARISON-FREE SORTING ALGORITHM FOR HIGH EFFICIENCY

IN O(N)

Volume 08, Issue 08, Pages: 170–175.

Paper Authors

K.RAJA RAO, N.G.N PRASAD

KAKINADA INSTITUTE OF ENGINEERING AND TECHNOLOGY FOR

WOMEN,KORANGI,ANDHRAPRADESH,INDIA,533461

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 170

EFFICIENT COMPARISON-FREE SORTING ALGORITHM FOR HIGH

EFFICIENCY IN O(N)

 1K.RAJA RAO, 2N.G.N PRASAD

1M.TECH VLES, DEPT OF E.C.E, KAKINADA INSTITUTE OF ENGINEERING AND

TECHNOLOGY,KORANGI,ANDHRAPRADESH,INDIA,533461

2ASSOSIATE PROFESSOR, KAKINADA INSTITUTE OF ENGINEERING AND

TECHNOLOGY,KORANGI,ANDHRAPRADESH,INDIA,533461

Abstract

This project proposes a hybrid approach for the enhancement of aerial images obtained from

UAV/MAV cameras as well as an Application Specific Integrated Circuit (ASIC) design based

sorting algorithm that excludes complex circuitry, but uses registers that hold the elements and

their respective occurrences in the input set and employ matrix mapping to perform sorting. We

propose a novel sorting algorithm that sorts input data integer elements on-the-fly without any

comparison operations between the data—comparison-free sorting. We present a complete

hardware structure, associated timing diagrams, and a formal mathematical proof, which show an

overall sorting time, in terms of clock cycles, that is linearly proportional to the number of

inputs, giving a speed complexity on the order of O(N). Our hardware-based sorting algorithm

precludes the need for SRAM-based memory or complex circuitry, such as pipelining structures,

but rather uses simple registers to hold the binary elements and the elements’ associated number

of occurrences in the input set, and uses matrix-mapping operations to perform the sorting

process. Thus, the total transistor count complexity is on the order of O(N). We evaluate an

application specified integrated circuit design of our sorting algorithm for a sample sorting of N

= 1024 elements of size K = 10-bit using 90-nm Taiwan Semiconductor Manufacturing

Company (TSMC) technology with a 1 V power supply.

Keywords: comparison free, Gigahertz clock cycle, one-hot weight representation, sorting

algorithms, SRAM, speed complexity O(N).

1. INTRODUCTION

The orders used are either in numerical

order or lexicographical order. Sorting

arranges the integer statistics into growing

or decreasing order and an array of strings

into alphabetical order. It can also be

referred to as ordering the data. Sorting is

taken into consideration as one of the

maximum essential tasks in lots of pc

packages for the motive that looking a

sorted array or list takes less time when in

comparison to an unordered or unsorted list.

There had been many tries made to research

the complexity of sorting algorithms and

plenty of exciting and precise sorting

algorithms have been proposed. There are

extra benefits inside the observe of sorting

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 171

algorithms further to know-how the sorting

techniques. These researches have gained a

significant amount of electricity to remedy

many other problems. Even although sorting

is one of the extraordinarily studied

problems in pc science, it stays the most

preferred integrative algorithm trouble in

practice. Moreover, every set of rules has its

own benefits and disadvantages. For in-

stance, bubble type might be efficient to

type a small variety of items, . On the

alternative hand, for a large number of

objects brief type would perform

thoroughly. There-fore, it isn't always

thinkable that one sorting method is higher

than another sorting technique. Moreover

the performance of each sorting algorithm is

predicated upon the statistics being sorted

and the device used for sorting [1].

In popular, simple sorting algorithms

perform two operations consisting of

compare factors and assign one detail.

These operations continue over and over

until the statistics is taken care of [2].

Moreover, choosing a good sorting set of

rules depending upon several factors along

with the size of the enter statistics, to be had

important memory, disk length, the volume

to which the list is already taken care of and

the distribution of values [1]. To measure

the performance of different sorting

algorithm we need to remember the

subsequent statistics which includes the

range of operations completed, the execution

time and the distance required for the set of

rules.

2. RELATED STUDY:

To address these challenges, much research

has focused on architecting customized

hardware designs for sorting algorithms in

order to fully utilize the hardware resources

and provide custom, cost-effective hardware

processing. However, due to the inherent

complexity of the sorting algorithms,

efficient hardware implementation is

challenging. To realize fast and power-

efficient hardware sorting, a significant

amount of hardware resources are required,

including, but not limited to, comparators,

memory elements, large global memories,

and complex pipelining, in addition to

complicated local and global control units.

Most prior work on hardware sorting

designs are implemented based on some

modification of traditional mathematical

algorithms, or are based on some modified

network of switching structures with

partially parallel computing processing and

pipelining stages. In these sorting

architectures, comparison units are essential

components that are characterized by high-

power consumption and feedback control

logic delays. These sorting methods

iteratively move data between comparison

units and local memories, requiring wide,

high-speed data buses, involving numerous

shift, swap, comparison, and store/fetch

operations, and have complicated control

logic, all of which do not scale well and may

need specialization for certain data-type

particulars. Due to the inherent mixture of

data processing and control logic within the

sorting structures processing elements,

designing these structures can be

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 172

cumbersome, imposing large design costs in

terms of area, power, and processing time.

Furthermore, these structures are not

inherently scalable due to the complexity of

integrating and combining the data path and

control logic within the processing units,

thus potentially requiring a full redesign for

different data sizes, as well as complex

connective wiring with high fan-out and fan-

in in addition to coupling effects, thus circuit

timing issues are challenging to address.

Additionally, if multiple processors are used

along with pipelining stages and global

memories, the data must be globally merged

from these stages to output the complete

final sorted data set. To address these

challenges, in this paper, we propose a new

4. METHODOLOGY

Leveraged a bitonic sorting network to more

efficiently map the methodology considering

energy and memory overheads for FPGA

devices. Further advances of that work [48]

presented novel and improved cost-

performance tradeoffs, as well as

identification of some Pareto optimal

solutions trading off energy and memory

overheads. Additional work [4] developed a

framework that composes basic sorting

architectures to generate a cost-efficient

hybrid sorting architecture, which enabled

fast hardware generation customized for

heterogeneous FPGA/CPU systems. Even

though all of these designs reported linear

sorting delay times as the number of input

elements increased, the authors did not

include the initialization times for the

required arrays/matrices, nor was the worst

case sorting time evaluated. Furthermore,

each design either required arrays to store

the input elements, associated arrays for the

rank operations and data routing, or had to

globally merge the intermediate sorted array

partitions. These array elements required a

significant amount of local and global input–
output data routing, SRAM-based memory,

and control signals, where the local control

logic communicated with each processing

unit partition and the global control unit.

This layout complicates adapting the design

to different input data bit-widths.

Additionally, since the control signals and

data path wiring was intertwined, circuit

design bugs were challenging to locate, in

turn leading to high-cost design. This

example operates as follows.

Fig.4.1. Block diagram of the hardware

structure for our sorting algorithm.

The inputted elements are inserted into a

binary matrix of size N×1, where each

element is of size k-bit (in this example N =

4 and k = 2 bit). Concurrently, the inputted

elements are converted to a one hot weight

representation and stored into a one-hot

matrix of size N × H, where each stored

element is of size H-bit and H=Ngiving a

one-hot matrix of size N-bit ×N-bit. The

one-hot matrix is transposed to a transpose

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 173

matrix of size N × N, which is multiplied by

the binary matrix—rather than using

comparison operations—to produce the

sorted matrix. For repeated elements in the

input set, the one-hot transpose matrix stores

multiple “1s” (equal to the number of

occurances of the repeated element in the

input set) in the element’s associated row,

where each “1” in the row maps to identical

elements in the binary matrix, an advantage

that will be exploited in the hardware design

(Section V). For example, if the input set

matrix is [2; 0; 2; 1], then the transpose

matrix is [0 0 0 0; 1 0 1 0; 0 0 0 1; 0 1 0 0].

Notice that the second row contains two

“1s,” such that when the transpose matrix is

multiplied by the second row in the binary

matrix, both “1” occurances in the transpose

matrix are mapped to the “2” in the binary

matrix. Therefore, the multiply operation

can be simply replaced with a mapping

function using a tri-state buffer (Section V).

Additionally, the first row in the transpose

matrix has no element in the first position

(i.e., element 3 is not in the binary matrix

since 3 is not in the input set). The absence

of this element can be recorded using a

counting register for each inputted element

(Section V), and this register records the

number of occurences of this element in the

binary matrix, which in this case would be

“0” for element 3.

5. SIMULATION RESULTS

With respect to all evaluated results, our

comparison-free sorting design provides an

efficient linear scalability of O(N). Our

design uses simple registers (flag, order, and

sorted registers) that are accessed on both

the rising and falling clock edges, and

simple standard CMOS components with a

forward flowing data movement

architecture. Even though our design shows

a linear performance cost of O(N), our

hardware design is recommended for data

element set sizes of less than 216 due to

practical integration into large computing IC

devices (e.g., graphics engines, routers, grid

controllers.), where the sorting hardware

accounts for no more than 10% of the IC’s

characteristics (power and area).

Fig.5.1. Model diagram.

Fig.5.2. Simulation model 1.

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 174

Fig.5.3. Simulation model 2.

CONCLUSION

In this paper, we proposed a novel

mathematical comparison-free sorting

algorithm and associated hardware

implementation. Our sorting design exhibits

linear complexity O(N) with respect to the

sorting speed, transistor count, and power

consumption. This linear growth is with

respect to the number of elements N for N =

2K where K is the bit width of the input

data. The slope of the linear growth rate is

small, with a growth rate of approximately 6

for the transistor count and power

consumption, and 1.5 for the sorting speed.

The order complexity and growth rates are

due to simple basic circuit components that

alleviate the need for SRAM-based memory

and pipelining complexity. Our

mathematically-simple algorithm

streamlines the sorting operation in one

forward flowing direction rather than using

compare operations and frequent data

movement between the storage and

computational units, as with other sorting

algorithms. Our design uses simple standard

library components including registers, a

one-hot decoder, a one detector, an

incrementer/ decrementer, and a PC,

combined with a simple control unit that

contains a small amount of delay logic.

REFERENCES

[1] F.-C. Leu, Y.-T. Tsai, and C. Y. Tang,

“An efficient external sorting algorithm,”
Inf. Process. Lett., vol. 75, pp. 159–163,

Sep. 2000.

[2] J. L. Bentley and R. Sedgewick, “Fast

algorithms for sorting and searching

strings,” in Proc. 8th Annu. ACM-SIAM

Symp. Discrete Algorithms (SODA), Jan.

1997, pp. 360–369.

[3] L. Xiao, X. Zhang, and S. A. Kubricht,

“Improving memory performance of sorting

algorithms,” J. Experim. Algorithmic, vol. 5,

no. 3, pp. 1–20, 2000.

[4] P. Sareen, “Comparison of sorting

algorithms (on the basis of average case),”
Int. J. Adv. Res. Comput. Sci. Softw. Eng.,

vol. 3, no. 3, pp. 522–532, Mar. 2013.

[5] H. Inoue, T. Moriyama, H. Komatsu, and

T. Nakatani, “AA-SORT: A new parallel

sorting algorithm for multi-core SIMD

processors,” in Proc. 16th Int. Conf. Parallel

Archit. Compil. Techn. (PACT), 2007, pp.

189–198.

[6] V. Kundeti and S. Rajasekaran,

“Efficient out-of-core sorting algorithms for

the parallel disks model,” J. Parallel

Distrib. Comput., vol. 71, no. 11, pp. 1427–
1433, 2011.

[7] G. Capannini, F. Silvestri, and R.

Baraglia, “Sorting on GPUs for large scale

datasets: A thorough comparison,” Int.

Process. Manage., vol. 48, no. 5, pp. 903–
917, 2012.

[8] D. Cederman and P. Tsigas, “GPU-

Quicksort: A practical quicksort algorithm

Vol 08 Issue08, Aug 2019 ISSN 2456 – 5083 Page 175

for graphics processors,” ACM J. Experim.

Algorithmics (JEA), vol. 14, Dec. 2009, Art.

no. 4.

[9] B. Jan, B. Montrucchio, C. Ragusa, F. G.

Ghan, and O. Khan, “Fast parallel sorting

algorithms on GPUs,” Int. J. Distrib.

Parallel Syst., vol. 3, no. 6, pp. 107–118,

Nov. 2012.

[10] N. Satish, M. Harris, and M. Garland,

“Designing efficient sorting algorithms for

manycore GPUs,” in Proc. 23rd IEEE Int.

Symp. Parallel Distrib. Process., May 2009,

pp. 1–10.

