
 
 

Vol 08 Issue09, Sept 2019                          ISSN 2456 – 5083                                        www.ijiemr.org 

  

COPY RIGHT 

 

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must 

be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works. No Reprint should be done to this paper, all copy 

right is authenticated to Paper Authors   

IJIEMR Transactions, online available on 13
th

  
 
Sept 2019. Link 

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-09 

Title A UNIFIED FRAMEWORK FOR STRING SIMILARITY SEARCH WITH HASH-

BASED 

Volume 08, Issue 09, Pages: 589–594. 

Paper Authors 

P. SUSMITHA VADANA, HARI KRISHNA DEEVI 

G.V.R. & S. COLLEGE OF ENGINEERING & TECHNOLOGY (APPROVED BY AICTE, NEW DELHI & 

AFFILIATED TO JNTUK KAKINADA) NEAR BUDAMPADU, GUNTUR-522007, A.P, INDIA 

 

 

 

 

                                         

                                                                                    USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER  

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic 

Bar Code 



 

Vol 08 Issue09, Sept 2019                                ISSN 2456 – 5083 Page 589 

 

 

A UNIFIED FRAMEWORK FOR STRING SIMILARITY SEARCH 

WITH HASH-BASED 
1
P. SUSMITHA VADANA, 

2
HARI KRISHNA DEEVI 

1
STUDENT, DEPARTMENT OF CSE, G.V.R. & S. COLLEGE OF ENGINEERING & TECHNOLOGY (APPROVED BY 

AICTE, NEW DELHI & AFFILIATED TO JNTUK KAKINADA) NEAR BUDAMPADU, GUNTUR-522007, A.P, 

INDIA. 
2
ASSOCIATE PROFESSOR DEPARTMENT OF CSE, G.V.R. & S. COLLEGE OF ENGINEERING & TECHNOLOGY 

(APPROVED BY AICTE, NEW DELHI & AFFILIATED TO JNTUK KAKINADA) NEAR BUDAMPADU, GUNTUR-

522007, A.P, INDIA. 
1
susmithapittala@gmail.com, 

2
harikrishnadeevi@gmail.com 

 

 

 
ABSTRACT String similarity search is a fundamental query that has been widely used for DNA 

sequencing, error-tolerant query auto-completion, and data cleaning needed in database, data 

warehouse and data mining. In this paper, we study string similarity search based on edit 

distance that is supported by many database management systems such as Oracle and 

PostgreSQL. Given the edit distance, ed(s, t), between two strings, s and t, the string similarity 

search is to find every string t in a string database D which is similar to a query string s such that 

ed(s, t)   for a given threshold. In the literature, most existing work take a filter-and-verify 

approach, where the filter step is introduced to reduce the high verification cost of two strings by 

utilizing an index built offline for D. The two up-to-date approaches are prefix filtering and local 

filtering. In this paper, we study string similarity search where strings can be either short or long. 

Our approach can support long strings, which are not well supported by the existing approaches 

due to the size of the index built and the time to build such index. We propose two new hash-

based labeling techniques, named OX label and XX label, for string similarity search. We assign 

a hash-label, Hs, to a string s, and prune the dissimilar strings by comparing two hash-labels, Hs 

and Ht, for two strings s and t in the filter step. The key idea behind is to take the dissimilar bit-

patterns between two hash-labels. We discuss our hash-based approaches, address their pruning 

power, and give the algorithms. Our hash-based approaches achieve high efficiency, and keep its 

index size and index construction time one order of magnitude smaller than the existing 

approaches in our experiment at the same time. 

 

1. INTRODUCTION 

Strings are widely used to represent a 

variety of textual data including DNA 

sequences, messages, emails, product 

reviews, and documents. And there are a 

large number of string datasets collected 

from various data sources in real  

 

applications. Due to the fact that string data 

from different sources may be inconsistent 

caused by the typing mistakes or the 

differences in data formats, as one of the 

most important fundamental tasks, string 

similarity search has been extensively 



 

Vol 08 Issue09, Sept 2019                                ISSN 2456 – 5083 Page 590 

 

studied [1], [5], [7], [18], [26], [32], [33], 

[34], which checks whether two strings are 

similar enough for data cleaning purposes in 

databases, data warehousing, and data 

mining systems. The applications that need 

string similarity search include fuzzy search 

[11], query auto-completion [29], and DNA 

sequencing [13]. In the literature, there are 

two categories to measure string similarity. 

One is token-based similarity metric 

including overlap, Jaccard, cosine and dice 

[12], [31], and the other is the character-

based similarity metric including edit 

distance [9]. The edit distance, ed(s, t), 

between two strings, s and t, is the minimum 

number of operations (substitution, 

insertion, and deletion) required to transform 

one string to another string. In this paper, we 

focus on string similarity search based on 

edit distance, which is supported in many 

database management systems such as 

Oracle, PostgreSQL and Lucene [7], and is 

used in detecting spammers [22] and DNA 

sequence alignment [17]. The challenge of 

the string similarity search is to design an 

effective index that can achieve high 

efficiency for query processing with small 

overhead in the index size and the indexing 

time. It becomes more challenge in the age 

of big data since the string datasets become 

increasingly large from two aspects, the 

lengths of the strings and the number of 

strings insides. The existing approaches 

need to build a large index when the strings 

are longer in a dataset. The larger the index 

is, the more time it requires to process 

queries. Accordingly, the performance 

decreases. In addition, such performance 

will be affected by a large number of strings 

in a dataset. In this paper, we focus on new 

hash-based approaches to deal with large 

short/long string datasets. 

2. EXISTING SYSTEM: 

Most of the existing string similarity search 

algorithms take a filter-and-verify approach. 

The filter step is introduced to reduce the 

verification cost of two strings, s and t, 

which is costly when two strings are long. In 

order to find similar strings in a string 

dataset D for a given query string s with a 

threshold, they first prune strings, t, that 

cannot be possibly similar with s such that 

ed(s, t) > using an index built offline for D 

in the filter step, and then verify those 

strings that are possibly similar one by one 

in the verification step. The performance of 

an approach is measured by the query cost 

and the index cost. The query cost is the sum 

of the filter cost (the total running time in 

the filter step) and the verification cost (the 

total running time in the verification step). 

The index cost is the index construction time 

and the index space needed.To efficiently 

process string similarity search, the existing 

work attempts to prune strings in D as many 

as possible based on the index built offline. 

Almost all the existing work needs to know 

the edit distance threshold  beforehand, in 

order to construct the index for a string 

dataset D, except for BitTree. Behm et al. 

propose a hierarchical structure containing 

different filters, e.g., the length and charsum 

filter, in Flamingo package. Gravano et al. 

propose to partition a string into a set of q-

grams and prune a string pair (s, t) that have 

less than a certain number of common q-

grams. The chunk-based approaches share 

the similar idea but partition the string using 

disjoint q-grams, called chun. Instead of 

using fixed-length q-grams, Li et al. 



 

Vol 08 Issue09, Sept 2019                                ISSN 2456 – 5083 Page 591 

 

selectively choose high-quality grams of 

variable length in index construction. 

3. PROPOSED SYSTEM: 

In this paper, we study string similarity 

search, when the query string s and the 

average string t in D can be long. The up-to-

date approaches cannot efficiently process 

long string similarity search for the 

following main reasons. For the prefix 

filtering approaches, the main idea is to use 

a small number of q-grams for filtering. 

When strings become long, the pruning 

power of such a small number of q-grams 

will reduce significantly. In addition, the 

prefix filtering approaches need to know  

before the index construction. However, 

when the average strings become long, users 

want to use different  for string similar 

search: a small  for short strings and a large 

for long strings. It cannot be easily handled 

by the prefix filtering approaches. For the 

local filtering approach, the BitTree index 

will be extremely large to be stored and it is 

time consuming to construct such an index. 

Different from the existing work in the 

literature, we propose new hash-based 

labeling for string similar search. Let Hs and 

Ht be two hash-labels for strings, s and t. 

We show that s and t are definitely 

dissimilar for a given using Hs and Ht. We 

propose two hash-based approaches, namely 

OX label and XX label. Both are in the 

scheme of (~, ℵ,}, #). Here, ~ and ℵ are two 
functions to create a hash-label Hs for a 

string s, and} and # are two functions to 

compare two hash-labels, Hs and Ht for two 

strings, s and t. The key idea behind is to 

take the dissimilar bit-patterns between two 

hash-labels. We discuss our hash-based 

approaches, address their pruning power, 

and give the algorithms. New optimizations 

to the verification algorithm are proposed 

for efficiently verifying whether a candidate 

string is an answer. We have conducted 

extensive performance studies and confirm 

the efficiency of our hash-based approaches 

in both datasets of long strings and datasets 

of short strings with much smaller index 

size. 

4. ARCHITECTURE: 

 

 

5. ALGORITHM: 

String Similarity Search: Given a string 

dataset D of n strings, aquery string s and an 

edit distance threshold _, the string 

similarity search problem is to find all 

strings t ∈D such that ed(s, t) ≤ _. A well-

known algorithm to compute the edit 

distance between two strings s and t is to fill 

an edit distance matrix of size (|s| + 1) × (|t| 

+ 1) using dynamic programming. However, 

it requires O(|s| ・ |t|) time complexity 

which is costly for long strings. The filter-

and-verify framework adopted by the 

existing work builds an index to prune the 

dissimilar strings of the query 

string in the dataset D in the filter step, and 

verifies the remaining candidates to get the 

real result in the verification step. The filter 

step is important to reduce the cost of 

computing the edit distance between two 

strings, by pruning the strings that cannot be 



 

Vol 08 Issue09, Sept 2019                                ISSN 2456 – 5083 Page 592 

 

possibly in the final results as many as 

possible using the index built offline. There 

are some simple heuristics that can be 

applied in the filter step. The length-filter is 

such an example, which prunes the string t if 

||s| − |t|| > _. The index built will further 

prune strings thatcannot be simply pruned 

by such simple heuristics. 

|Qs ∩ Qt| ≥ max{|s|, |t|} + q − 1 − q_ 

6. IMPLEMENTATION 

UPLOAD PRODUCT 

The registered users are authorized to upload 

the product. The product owners have ability 

to change or even delete the product from 

the application at any point of time. The 

products can be viewed to other users and 

product owners can only access the details. 

STRING SIMILARITY SEARCH 

The uploaded products are listed in the 

users’ view. There are lot of products are 

listed and in order to avoid congestion, the 

search can be available to make utilize the 

products in effective way. The searches have 

more number of details. In order to avoid the 

congestions searches can be utilized and 

give suggestion. 

UPLOAD DOCUMET ANALYSIS 

According to user search it shows the 

suggestion of product can be shown to the 

user. The products are shows to user 

according to most searches and have 

different types of search to get the details 

and better retrieval of product in order to 

implement and make use of the search. 

GRAPH ANALYSIS 

Graph analysis of details can be taken from 

the data which are utilized in flow of 

project. The graph can be utilized to 

showcase the products maximum retrieval 

by users search and how effective to user 

while they are searching in the system. 

7. CONCLUSION: 

In this paper, we study two new hash-based 

approaches, OX label and XX label, for 

string similarity search based on edit 

distance, where OX = (~, ∨,⊕,#) and XX = 

(~,⊕,⊕,#). Both OX and XX label use the 

same last two functions, ⊕ and #, to 

compare two hash-labels for pruning. But 

they take a different way to create the hash-

labels. Here, OX label uses two functions, ~ 

and ∨, to create a hash-label for a string, 

whereas XX label uses two functions, ~ and ⊕, to create a hash-label for a sting. We 

prove that both OX and XX label can be 

used to prune dissimilar strings, s and t, 

when ed(s, t) > . The index size for OX label 

and XX label is determined by L, and the 

hash-label for string of any length has the 

same L (the number of bits). We analyze the 

pruning power by OX label and XX label. 

We show that OX label is effective when L 

is sufficiently large comparing to the sum of 

the lengths of two strings, s and t. We also 

show that the pruning power of XX label 

only depends on the number of different q- 

grams between the q-gram set Qs and the q-

gram set Qt for s and t, and can be 

effectively used for both short and long 

string similarity pruning. We conducted 

extensive performance studies using 6 real 

string datasets.  

8. FUTURE WORK: 

In future, we will show that the index size 

and index construction time for OX label 

and XX label can be at least one order of 

magnitude smaller than the up-to-date 

approaches, and the hash-based approaches 

can significantly reduce query time. We also 



 

Vol 08 Issue09, Sept 2019                                ISSN 2456 – 5083 Page 593 

 

analyze the impact of index length to the 

query performance and the improvement of 

the proposed verification optimizations in 

our experiments. Scalability study is 

conducted to confirm the efficiency of our 

approaches by increasing the number of 

strings in the dataset and by increasing the 

string length. XX label with L = 640 (bits) 

per hash-label is capable of handling any 

short/long string datasets in our testing. 

REFERENCES 

[1] A. Arasu, V. Ganti, and R. Kaushik. 

Efficient exact set-similarity joins. In Proc. 

of VLDB, 2006. 

[2] A. Behm, R. Vernica, S. Alsubaiee, S. Ji, 

J. Lu, L. Jin, Y. Lu, and C. Li. UCI 

Flamingo Package 4.1, 2010. 

[3] B. H. Bloom. Space/time trade-offs in 

hash coding with allowable errors. 

Commun. ACM, 13(7), 1970. 

[4] A. Z. Broder, M. Charikar, A. M. Frieze, 

and M. Mitzenmacher. Minwise independent 

permutations. In Proc. of STOC’98, 1998. 

[5] S. Chaudhuri, K. Ganjam, V. Ganti, and 

R. Motwani. Robust and efficient fuzzy 

match for online data cleaning. In Proc. of 

SIGMOD’03, 2003. 

[6] S. Chaudhuri, V. Ganti, and R. Kaushik. 

A primitive operator for similarity joins in 

data cleaning. In Proc of ICDE’06, 2006. 

[7] D. Deng, G. Li, and J. Feng. A pivotal 

prefix based filtering algorithm for string 

similarity search. In Proc. of SIGMOD’14, 

2014. 

[8] J. Feng, J. Wang, and G. Li. Trie-join: a 

trie-based method for efficient string 

similarity joins. VLDB J., 21(4):437–461, 

2012. 

[9] L. Gravano, P. G. Ipeirotis, H. V. 

Jagadish, N. Koudas, S. Muthukrishnan, and 

D. Srivastava. Approximate string joins in a 

database (almost) for free. In Proc. of 

VLDB’01, 2001. 

[10] P. Indyk and R. Motwani. Approximate 

nearest neighbors: Towards removing the 

curse of dimensionality. In Proc. of 

STOC’98, 1998. 

[11] S. Ji, G. Li, C. Li, and J. Feng. Efficient 

interactive fuzzy keyword search. In Proc. of 

WWW’09, 2009. 

[12] Y. Jiang, G. Li, J. Feng, and W. Li. 

String similarity joins: An experimental 

evaluation. PVLDB, 7(8), 2014. 

[13] B. Langmead, C. Trapnell, M. Pop, and 

S. L. Salzberg. Ultrafast and memory-

efficient alignment of short dna sequences to 

the human genome. Genome biology, 10(3), 

2009. 

[14] D. Lemire and O. Kaser. Recursive n-

gram hashing is pairwise independent, at 

best. Computer Speech & Language, 24(4), 

2010. 

[15] C. Li, B. Wang, and X. Yang. 

VGRAM: improving performance of 

approximate queries on string collections 

using variable-length grams. In Proc. of 

VLDB’07, 2007. 

[16] G. Li, D. Deng, J. Wang, and J. Feng. 

PASS-JOIN: A partition-based method for 

similarity joins. PVLDB, 5(3), 2011. 

[17] Y. Li, A. Terrell, and J. M. Patel. 

WHAM: a high-throughput sequence 

alignment method. In Proc. of SIGMOD’11, 

2011. 

[18] W. Lu, X. Du, M. Hadjieleftheriou, and 

B. C. Ooi. Efficiently supporting edit 

distance based string similarity search using 

B+-trees. TKDE, 26(12), 2014. 

[19] J. McAuley, R. Pandey, and J. 

Leskovec. Inferring networks of 



 

Vol 08 Issue09, Sept 2019                                ISSN 2456 – 5083 Page 594 

 

substitutable and complementary products. 

In Proceedings of SIGKDD, 2015. 

[20] M. Mitzenmacher, R. Pagh, and N. 

Pham. Efficient estimation for high 

similarities using odd sketches. In Proc. of 

WWW’14, 2014. 

[21] M. Mitzenmacher and E. Upfal. 

Probability and computing: Randomized 

algorithms and probabilistic analysis. 

Cambridge University Press, 2005. 

[22] V. M. Prieto, M. ´Alvarez, and F. 

Cacheda. Detecting linkedin spammers and 

its spam nets. IJACSA, 4(9), 2013. 

[23] J. Qin, W. Wang, Y. Lu, C. Xiao, and 

X. Lin. Efficient exact edit similarity query 

processing with the asymmetric signature 

scheme. In Proc. of SIGMOD’11, 2011. 

[24] S. Wandelt, D. Deng, S. Gerdjikov, S. 

Mishra, P. Mitankin, M. Patil, E. Siragusa, 

A. Tiskin, W. Wang, J. Wang, and U. Leser. 

State-of-the-art in string similarity search 

and join. SIGMOD Rec., 2014. 

[25] J. Wang, G. Li, and J. Feng. Trie-join: 

Efficient trie-based string similarity joins 

with edit-distance constraints. PVLDB, 3(1), 

2010. 

[26] J.Wang, G. Li, and J. Feng. Can we 

beat the prefix filtering?: an adaptive 

framework for similarity join and search. In 

Proc. of SIGMOD’12, 2012. 

[27] P. Wang, C. Xiao, J. Qin, W. Wang, X. 

Zhang, and Y. Ishikawa. Local similarity 

search for unstructured text. In Proc. of 

SIGMOD’16, 2016. 

[28] W. Wang, J. Qin, C. Xiao, X. Lin, and 

H. T. Shen. Vchunkjoin: An efficient 

algorithm for edit similarity joins. TKDE, 

25(8), 2013. 

[29] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, 

K. Tsuda, and K. Sadakane. Efficient error-

tolerant query autocompletion. PVLDB, 

2013. 

[30] C. Xiao, W. Wang, and X. Lin. Ed-join: 

an efficient algorithm for similarity joins 

with edit distance constraints. PVLDB, 1(1), 

2008. 

[31] C. Xiao, W. Wang, X. Lin, J. X. Yu, 

and G. Wang. Efficient similarity joins for 

near-duplicate detection. TODS, 36(3), 

2011. 

[32] X. Yang, B. Wang, and C. Li. Cost-

based variable-length-gram selection for 

string collections to support approximate 

queries efficiently. In Proc. of SIGMOD’08, 

2008. 

[33] X. Yang, Y. Wang, B. Wang, and W. 

Wang. Local filtering: Improving the 

performance of approximate queries on 

string collections. In Proc. Of SIGMOD’15, 

2015. 

[34] Z. Zhang, M. Hadjieleftheriou, B. C. 

Ooi, and D. Srivastava. Bed-tree: an all-

purpose index structure for string similarity 

search based on edit distance. In Proc. of 

SIGMOD’10, 2010. 

 
 
 
 
 
 
 

 


