

Vol 08 Issue11, Nov 2019 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 013
th

Nov 2019. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-11

Title SCALABLE CONTROLLER BASED PMBIST DESIGN FOR MEMORY BISTS

Volume 08, Issue 11, Pages: 34–40.

Paper Authors

MOHAMMAD IRFAN, Y.BASAVARAJU

SRI KRISHNADEVARAYA ENGINEERING COLLEGE, GOOTY, AP, INDIA

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 08 Issue11, Nov 2019 ISSN 2456 – 5083 Page 34

SCALABLE CONTROLLER BASED PMBIST DESIGN FOR MEMORY

BISTS

MOHAMMAD IRFAN, Y.BASAVARAJU

PG SCHOLAR.DEPT OF ECE, SRI KRISHNADEVARAYA ENGINEERING COLLEGE, GOOTY, AP, INDIA

ASSISTANT PROFESSOR, DEPT OF ECE, SRI KRISHNADEVARAYA ENGINEERING COLLEGE, GOOTY, AP,INDIA

Abstract: With increasing design complexity in modern SoC design, many memory instances

with different sizes and types would be included. To test all of the memory with relatively low

cost becomes an important issue. Providing user-defined pattern for screening out various

manufacturing defects is also a major demand. To ease the tradeoff between the hardware cost

and test flexibility, Programmable Built-In Self-Test (P-MBIST) method is an opening approach

to complete the memory testing under these circumstances. Many researches have been focused

on P-MBIST design. Processor-based architecture provides high test flexibility, but it increases

the test development costs while applying to various processor family. To lower the design cost,

a customized processor and instruction have been developed. It uses program memory to store

the test program. To further reduce the hardware cost, the instruction can be serially input and

saved in one internal register by adopting simple controller. However, the issue for multiinstance

testing in parallel is not discussed in the literature. In this project, we implement a hardware

sharing architecture to test the memory with same type in parallelism. The proposed method uses

only one address counter to generate the required address for March-based algorithm, including

row scan and column scan. The controller can be applied to different memory types with the

same read/write cycle. Higher testing speed can be achieved by inserting two pipeline

stages.Programmable Built-In Self-Test (P-MBIST) solution provides a certain degree of

flexibility with reasonable hardware cost, based on the customized controller/processor. In this

work, we propose a hardware sharing architecture for P-MBIST design. Through sharing the

common address generator and controller, the area overhead of P-MBIST circuit can be

significantly reduced. Higher testing speed can be achieved by inserting two pipeline stages.

Finally, the proposed P-MBIST circuit can be automatically generated from the user-defined

configuration file

1. INTRODUCTION

With increasing design complexity in

modern SoC design, many memory

instances with different sizes and types

would be included. To test all of the

memory with relatively low cost becomes an

important issue. Providing user-defined

pattern for screening out various

manufacturing defects is also a major

demand. To ease the tradeoff between the

hardware cost and test flexibility,

Programmable Built-In Self-Test (P-

MBIST) method is an opening approach to

complete the memory testing under these

circumstances. Many researches have been

Vol 08 Issue11, Nov 2019 ISSN 2456 – 5083 Page 35

focused on P-MBIST design. Processor-

based architecture provides high test

flexibility, but it increases the test

development costs while applying to various

processor families. To lower the design cost,

a customized processor and instruction have

been developed. It uses program memory to

store the test program. To further reduce the

hardware cost, the instruction can be serially

input and saved in one internal register by

adopting simple controller. However, the

issue for multi instance testing in parallel is

not discussed. Hardware sharing architecture

to test the memory with same type in

parallelism has been proposed. The

proposed method uses only one address

counter to generate the required address for

March-based algorithm, including row scan

and column scan. The controller can be

applied to different memory types with the

same read/write cycle. Higher testing speed

can be achieved by inserting two pipeline

stages. Finally, the proposed P-MBIST

engine can be automatically generated from

the user-defined configuration file.

2. MEMORY BIST

ARCHITECTURE

Semiconductor memories are dedicated

circuits designed to store digital information,

they are the most used IP in modern SoCs.

Memories incorporate the greatest

concentration of transistors per square area

for a given semiconductor technology,

pushing the chip fabrication process to its

limit. Consequently, memories are more

failure prone than logic. Testing such

embedded memories can be a challenging

task as each type of memory has

peculiarities that make it more susceptible to

distinct types of faults. The objective of this

paper is not to discuss various fault models a

memory can present but instead to show

how to implement a Built-In Self-Test

(BIST) Architecture that could cover them

all.The focus of the discussion in this paper

will be static RAM memories (SRAM),

which are the most common memory type

used in SoCs. The memory test is in general

a well understood process [2]. It consists of

identifying all physical processes that can

lead a memory to malfunction; these are

usually known as physical faults. The list of

such faults is then mapped to observable

behaviors that do not correspond to normal

(expected) memory behaviors, this is called

functional-faults or fault-models. Note that

many different physical-faults can exhibit

themselves as the same malfunction. We

could think of the physical-faults as the

disease while the malfunctions as the

symptoms. Finally, specific sequences of

operations are designed to sensitize

and detect these symptoms. In most cases

(except when fault analysis is intended) the

reasons for the symptoms are irrelevant. It is

enough to detect the misbehavior to

conclude that the memory has problems.

In the case of SRAMs, the sequence of

operations designed to detect faults is called

a “march sequence” or “march algorithm”.

Some professionals may consider the march

algorithm as being the whole memory test,

but for this paper, we prefer to consider a

march algorithm to be only the sequences of

reads and writes performed in the memory.

3. MARCH BASED ALGORITHM

Many efficient testing algorithms have been

proposed to detect different fault models .

However, to implement various testing

algorithms in the same P-BIST design would

Vol 08 Issue11, Nov 2019 ISSN 2456 – 5083 Page 36

require high area cost. Thus, the selection of

test algorithm families should be carefully

considered. Many March test algorithms[8]

have been proposed to detect the above

faults . We list a few important ones in

Table 8.1, For word-oriented memories, the

read and write operations in the March tests

are extended to reading and writing a word

(called the background word, background

pattern, or data back- ground). For example,

the word-oriented MATS++ is represented

as { (wa); ⇑ (ra;wa); ⇑ (ra;wa; ra)}, where a

is a background word. M

The typical memory BIST implements a

March algorithm . A March test is composed

of a sequence of March elements, each one

corresponding to a series of read/write

operations to be sequentially performed on

the memory cells. The March elements are

executed in ascending or descending address

order (or undetermined). The operations

can be writing or reading of the 0

and 1 values, e.g., w0, w1, r0 and r1. An

example of the common March Test

notation follows (complexity 4n, where n is

the number of memory addresses):

{ (w0); (r0, w1); (r1)}

Different approaches have been

proposed in the literature in order to

implement BIST- based March test

algorithms.

The hardwired BIST approach is the

most widely used. It consists in adding a

custom circuitry to each core, implementing

a suitable BIST algorithm . The main

advantages of this approach are that the test

application time is short and the area

overhead is relatively small. Hardwired

BIST is also a good way to protect the

intellectual property contained in the core:

the memory core provider needs only to

deliver the BIST activation and response

commands for testing the core without

disclosing its internal design. At the same

time, this approach provides very low

flexibility: any modification to the test

algorithm requires redesigning the BIST

circuitry.The soft BIST approach assumes

that a processor is already present in the

SoC: the processor is exploited to run a

program that performs the test of the other

cores. The test program executed by the

processor applies test patterns to each core

under test and checks the results; it is stored

in a memory containing the test patterns,

also. This approach uses the system bus for

applying test patterns and reading test

responses, and it guarantees a very low area

overhead, limited to the chip-level test

infrastructure. The disadvantage of this

approach is mainly related to the strict

dependence of the test program on the

available processor. As a result, the core

vendor needs to develop for the same core

different test programs, one for each

processor family, thus increasing the test

development costs. Moreover, intellectual

property is not well protected, as the core

vendor supplies to the user the test program

for the core under test. Finally, this approach

can be applied only to cores directly

connected to the system bus; the approach

cannot be applied if the core is not

completely controllable and observable.

An alternative approach is the one

usually denoted as programmable BIST. The

core vendor develops a DFT logic, which

wraps the core under test and includes a

custom processor, which is exclusively

devoted to test the core. The advantages of

Vol 08 Issue11, Nov 2019 ISSN 2456 – 5083 Page 37

this architecture are manifold the intellectual

property can be protected, only one test

program has to be developed, and the design

cost for the test is very reduced; the

technique provides high flexibility since any

modification of the algorithm simply

requires a change in the test program; the

test application time can be taken under

control thanks to the efficiency of the

custom test processor, and the test can

consequently be executed at-speed. Finally,

each core is autonomous even from the test

point of view, and its test only requires

activating the test procedure and reading the

results, as for hardwired BIST.

March-based algorithm[8] is an

important class to detect a large variety of

faults . A March test consists of a finite

sequence of March elements. Each element

performs a series of “reading” and “writing”

operations to all memory cells. The

addressing order of each element is executed

in ascending , descending , or either () way.

It contains three March elements. The first

element performs writing 0 to each memory

cell in either addressing order. The second

element performs two operations to each

address in ascending order.

Finally, the third element reads all

the address in descending order. The

complexity order is noted to 4N, where N is

the number of memory addresses.

Test sequence (4N): { (w0), (r0, (r1)}

Beside, based on the March-based test

sequence, the dynamic faults can be tested

by repeatly performing the same operation

in the same memory cell. To efficiently

implement March-based algorithm, we

define the corresponding instruction for P-

MBIST architecture. The advantage is that

one can program the instruction to modify

the testing algorithm during run time. In our

shared architecture, only one address

generator is required for testing all memory.

Also, different memory types with the same

read/write cycle can share the same

controller.

4. P-MBIST ARCHITECTURE

To support flexible March elements

and diagnostic procedures, the proposed P-

MBIST[2] provides the following features:

(1) different data background, (2)

programmable March-based element, (3)

column-scan addressing mode, (4) capturing

the address, syndrome and state of failures,

(5) parallel and sequential test, (6) pipeline

mode for higher test speed. Table 9.I lists

the detailed programmable items of

instructions. The “folded” and “inverted”

bits can invert the “data_bg” while the

switching of the specified address bit. By

setting the “data_bg” to 0 and configuring

both “folded” and “interted” bits to 1, the

Checkerboard pattern can be generated.

Column scan addressing can be controlled

by cs_sel. Finally, each March operation

description uses three bits, EOC, R/W, and

Polarity, to define the operation. Fig. 10.1

gives an instruction example of performing

three operations in a March element. By

setting up the “diagnosis” bit to 1, the failure

information will be dumped out while

dectecting the mismatching memory output.

Fig. 1 shows the block diagram of the

proposed P-MBIST design[2]. Firstly, the

instruction is serially shifted into

instruction_read module. To reduce the

hardware cost, the address counter is shared

to test all memory instances. Moreover,

decoder blocks can support different

Vol 08 Issue11, Nov 2019 ISSN 2456 – 5083 Page 38

memory type testing without increasing any

state (i.e. each memory has the same

read/write cycle). The memory in the same

type can be grouped and tested in the either

sequential or parallel way. The supported

memory types include single/dual/twoport

SRAM, one/two-port register file and ROM.

Finally, according to the user-defined

configuration file, the proposed P-MBIST

engine can be automatically generated from

the developed software program.

Fig. 1 Block diagram of P-MBIST design

5. ADDRESS GENERATOR

To share the common address generator[2],

it is a simple way to choose an address

counter with the largest address bit among

all the under-tested memory instances. As

shown in Fig. 10.3, the low-bit of address

counter can be used to indicate the low-

address memory instance, by properly

controlling the chip-select signal for each

memory instance.

As for the column-scan mode, the address

counter is not just ascending or descending

by 1. Table 10.2 provides an example, which

defines the column Mux to 4 and the

maximum address to 11. In Table 10.2, the

1st column shows the address counter output

for row scan (i.e. ascending by 1). The 2nd

column gives the address for column scan

(i.e. ascending by 4). To share the row-scan

and column-scan adder, we use the up-

scrambler to adjust the added bit for

column-scan mode. As shown in the 3rd

column, the low bit of A[1:0] is shifted to

the position of most significant bit, which

means the row adder can directly apply to

the A[2] bit. Similarly, after the process of

down-scrambler, the column scan address

for ascending by 4 can be generated. By

adding two scrambler blocks, the row adder

can support the column addressing.To

continuously perform the operation to each

address in column-scan way, it encounters

two special cases due to overflow of

address-up/-down counting. Table 10.3 lists

an example for 8-bit address, where the

column Mux is 4 and the maximal address is

199. In the up-counting case, if the column-

scan addressing exceeds the maximum

address, the word-line address is reset to 0

and the bit-line address is switched to the

next column cell. For the down-counting

case, the maximum word-line address

should be set to hi-bit part to deal with the

overflow case. The overall block diagram of

address generator is shown in Fig. 10.5. The

path of column scan and row scan are

highlighted. Finally, by the control signals,

fail_h and EOC, address counter is held

while dumping failure data (i.e. fail_h) and

executing continuous operations in the same

March element (i.e. EOC). A built-in look-

up table is required to store the maximal

address and column MUX number of all

under-tested memories.

Vol 08 Issue11, Nov 2019 ISSN 2456 – 5083 Page 39

6. SIMULATION RESULTS

Fig. 11.1 Simulation Result

7. CONCLUSION AND FUTURE

SCOPE

In this work, an efficient architecture

for PMBIST circuit has been designed based

on the hardware sharing method, the

common address counter has been used to

provide to provide all memory instances,

including row-scan and column-scan

addressing mode. Moreover, the controller

can be extended to different memory types

in the same read/write cycle condition,

without increasing any state. Thus, the

hardware cost can be greatly reduced.

Finally, the P- MBIST circuit can be

automatically generated from the user-

defined configuration file.We can extend

this work to implement Programmable

Memory Built-In Self Test with less

hardware and with minimum number of read

and write operations. To the extend this

work we can

REFERENCES

[1] D. Appello, V. Tancorre, P. Bernardi,

M. Grosso, M. Rebaudengo and M.S.

Reorda, "Embedded Memory Diagnosis: An

Industrial Workflow," in Proc. ITC, pp:1 - 9,

Oct. 2006.

[2] I. Bayraktaroglu, O. Caty and W.

Yickkei, "Highly configurable

programmable built-in self test architecture

for high-speed memories," in Proc. VLSI

Test Symposium, pp:21 - 26, May 2005.

[3] D. Xiaogang, N. Mukherjee, C. Wu-

Tung; S.M. Reddy, "Fullspeed field-

programmable memory BIST architecture,"

in Proc. ITC, pp:45.3, Nov. 2005.

[4] S. Boutobza, M. Nicolaidis, K.M.

Lamara and A. Costa, "Programmable

memory BIST, " in Proc. ITC, pp:45.2, Nov.

2005.

[5] S. Boutobza, M. Nicolaidis, K.M.

Lamara and A. Costa, "A Transparent based

Programmable Memory BIST," in Proc.

IEEE European Test Symposium, pp. 89 -

96, May 2006.

[6] M. Miyazaki, T. Yoneda and H.

Fujiwara, "A memory groupingmethod for

sharing memory BIST logic," in Proc. Asia

and South Pacific Design Automation

Conference, pp. 671-676, Jan. 2006.

[7] R.S Sable, R.P. Saraf, R.A. Parekhji

and A.N. Chandorkar, "Builtin self-test

technique for selective detection of

neighbourhood pattern sensitive faults in

memories," in Proc. VLSI Design

conference, pp. 753 - 756, 2004.

[8] C.F. Wu, C.T. Huang and C.W. Wu,

"RAMSES: a fast memory fault simulator,"

in Proc. Defect and Fault Tolerance in VLSI

Systems Symposium, pp. 165 - 173, Nov.

1999.

[9] A.J. Van de Goor and J. de Neef

"Industrial Evaluation of DRAM Tests," in

Proc. Design, Automation Test in Europe,

pp. 623-631,\ March 1999.

[10] Chung-Fu Lin, Chia-Fu Huang, De-

Chung Lu, Chih-Chiang Hsu, “A Low-Cost

Vol 08 Issue11, Nov 2019 ISSN 2456 – 5083 Page 40

Programmable Memory BIST Design for

Multiple Memory Instances”

INTERNATIONAL TEST CONFERENCE

2008 IEEE.

[11] Po-Chang Tsai, Sying-Jyan Wang

and Feng-Ming Chang, “FSM-Based

Programmable Memory BIST with Macro

Command” Proceedings of the 2005 IEEE

International Workshop on Memory

Technology, Design, and Testing

(MTDT’05)

	4. P-MBIST ARCHITECTURE
	5. ADDRESS GENERATOR
	6. SIMULATION RESULTS

	REFERENCES

