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ABSTRACT 

An in-depth investigation of topology-preserving transformations, with a special emphasis 

on highly minimum generalized homeomorphisms in structure spaces.   The study explores 

the basic principles of topology and emphasizes the importance of transformations that 

maintain topological characteristics in different mathematical situations.   Strongly minimum 

generalized homeomorphisms are a class of transformations that go beyond standard 

homeomorphisms. They preserve extra structural aspects and provide a more sophisticated 

knowledge of mathematical spaces.  
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I. INTRODUCTION 

Topology-preserving transformations are crucial in mathematics, especially when studying 

structure spaces.   These transformations, often examined using the concept of highly minimum 

generalized homeomorphisms, provide a substantial contribution to our comprehension of the 

connections and characteristics inherent in mathematical structures.   This investigation focuses 

on topology-preserving transformations, specifically examining highly minimum generalized 

homeomorphisms inside structure spaces.   Our objective is to provide a thorough analysis that 

reveals the significant consequences and practical uses of these changes, while also clarifying the 

underlying principles that dictate the maintenance of topology in different mathematical scenarios.   

The central focus of this discussion is on the notion of topology, which is a field of mathematics 

that deals with the characteristics of space that remain unchanged when subjected to continuous 

transformations, such as stretching, folding, and curving.   Topology-preserving transformations 

are crucial for comprehending the fundamental structure and connections inside mathematical 

spaces.   These transformations preserve the fundamental topological properties of a space, 

providing a tool for mathematicians to identify the inherent patterns and traits that remain 

unchanged despite distortions.   The investigation of these changes becomes especially fascinating 

when examined within the context of strongly minimum generalized homeomorphisms.   Strongly 
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minimal generalized homeomorphisms are a very potent category of transformations that surpass 

the usual definition of homeomorphisms.   Homeomorphisms provide a bijective relationship 

between points in two topological spaces. On the other hand, highly minimal generalized 

homeomorphisms go beyond this by also maintaining other structural features.   These 

transformations provide a more profound understanding of the characteristics of mathematical 

spaces, enabling a more detailed examination of the connections between points and their wider 

structural consequences.  

Structure spaces are used as the venues in which mathematical objects and their intrinsic qualities 

are examined.   These spaces embody the fundamental nature of mathematical structures, providing 

a framework for the examination of connections and changes.   The incorporation of topology-

preserving transformations, particularly those defined by strongly minimal generalized 

homeomorphisms, enhances the examination of structure spaces by offering a more intricate 

comprehension of the interaction between mathematical entities and the maintenance of their 

fundamental attributes.   In order to fully understand the importance of topology-preserving 

transformations in structure spaces, it is necessary to explore their applications in many areas of 

mathematics.   An important use may be found in the field of algebraic topology, where the study 

of algebraic properties using homeomorphisms and homotopy equivalences has proven 

fundamental.   The inclusion of substantially minimum generalized homeomorphisms expands the 

scope of these transformations, allowing for a more detailed analysis of algebraic structures and 

their relationships.   This enhanced comprehension enhances the advancement of algebraic 

topology as a field, providing novel viewpoints and methodologies for the investigation of 

mathematical spaces.   Moreover, the impact of topology-preserving transformations extends 

beyond the domain of algebraic topology.   In the field of differential geometry, which focuses on 

studying the characteristics of smooth manifolds, these transformations are essential for 

maintaining the smooth structure of geometric spaces.   The inclusion of highly minimal 

generalized homeomorphisms in the field of differential geometry provides opportunities for 

exploring complex connections between differentiable structures, leading to a more thorough 

comprehension of the geometric properties of mathematical spaces.  

Topology-preserving transformations are also used in the rapidly growing area of data analysis 

and machine learning.   Preserving the topological characteristics of data sets is crucial in activities 

like reducing dimensions and recognizing patterns.   Researchers may use highly minimum 

generalized homeomorphisms to create transformation algorithms that effectively decrease the 

dimensionality of data while preserving important topological information.   The junction of 

mathematics and data science highlights the flexibility and practicality of topology-preserving 

transformations in contemporary study and technology.   As we explore the complex terrain of 

highly minimum generalized homeomorphisms, it becomes clear that these transformations have 

distinct characteristics that differentiate them from conventional homeomorphisms.   An important 
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attribute is the maintenance of minimum structures, guaranteeing that only the fundamental 

elements of a mathematical space are conserved.   The minimalistic method to retaining structure 

is especially beneficial in situations when a brief representation of a space is crucial. It enables 

mathematicians and researchers to condense complicated structures into more comprehensible 

forms without losing important information.   The investigation of very basic generalized 

homeomorphisms also include the examination of topological groups and their corresponding 

transformation groups.   When these transformations are applied to topological groups, they 

provide deep insights into the symmetries and structural characteristics of mathematical spaces.   

The interaction between topology-preserving transformations and group theory reveals a complex 

network of relationships, offering mathematicians a robust framework for concurrently 

investigating the algebraic and topological aspects of mathematical objects.   The investigation of 

topology-preserving transformations, particularly in relation to highly minimum generalized 

homeomorphisms, introduces new perspectives in the examination of structure spaces in several 

mathematical fields.   The impact of these changes extends across other fields, including algebraic 

topology, differential geometry, and data science, significantly influencing the way 

mathematicians understand and examine mathematical spaces.   The interaction between topology-

preserving transformations and highly minimum generalized homeomorphisms not only enhances 

our comprehension of mathematical structures but also enhances the range of tools accessible for 

addressing intricate issues in several domains.   As we further explore the complexities of these 

changes, the exploration into the core of mathematical spaces has the potential to provide profound 

understanding and significant changes.  

II. REVIEW OF LITERATURE 

Polanco, Carlos. (2023). Topology, sometimes referred to as "rubber sheet geometry," explores 

the underlying characteristics of space, shape, and the inherent attributes of things that stay 

unaltered when subjected to different deformations such as stretching or bending.   The book 

"TOPOLOGY IN SIMPLE TERMS: A COMPREHENSIBLE INTRODUCTION" seeks to clarify 

this fascinating field and provide its fundamental principles in a comprehensible way.   We start 

by examining Topological Spaces, which serve as the fundamental basis for topology, revealing 

the deep concepts that underlie space and point-set structures.   Next, we go to the Continuity 

Property, which aids in comprehending the continuous quality of functions and maps.   The 

Separation Property elucidates the delineations and connections between points and sets.   Delving 

further, Metric Spaces and Convergence provide a framework in which distances and limitations 

play crucial roles.   The conversation on Compactness and Paracompactness, as well as 

Connectedness and Path Connectivity, illuminates the inherent characteristics of places that 

determine their behavior when subjected to certain changes.   As we explore deeper, the concepts 

of Homotopy and the Fundamental Group enable us to comprehend the fundamental nature of 

shape and deformation, guiding us into the complex realm of Manifolds and Tangent Spaces. 
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These concepts serve as a connection between the abstract domain of topology and the more 

concrete domain of geometry.  

Rajab, Ahmed et al., (2023) The field of topology, which seeks to comprehend the underlying 

characteristics of spaces, has been enhanced by the incorporation of open sets.   This investigation 

focuses on the field of topology, revealing fundamental concepts such as interior, closure, limit 

points, continuous functions, and others.   The paper explores the complex connections between 

open sets and classical topology using precise definitions, clear examples, and a network of 

theorems.   We examine the interaction of functions, explore the characteristics of 

homeomorphisms, and examine the relationships between perfectly continuous and contra-

continuous functions.   This paper provides a distinct viewpoint on topological spaces by 

combining known topology with innovative concepts, revealing the complex nature of their 

structure.   Introduction   Topology is a mathematical discipline that explores the underlying 

characteristics and connections between spaces, with a focus on ideas such as continuity, 

convergence, and openness.   The study of traditional topology has played a crucial role in 

comprehending the arrangement of spaces by examining open sets, continuous functions, and other 

topological characteristics.   Nevertheless, there have been recent advancements that have 

expanded this domain by introducing the concept of "-open sets," resulting in the birth of a fresh 

collection of ideas and characteristics that provide innovative perspectives on topological spaces.  

Makai, Jr et al., (2016) We explore both weak and strong structures for generalized topological 

spaces, including products, sums, subspaces, quotients, and the entire lattice of generalized 

topologies on a specified set.   In addition, we present the concept of $T_{3.5}$ generalized 

topological spaces and provide a precise criterion for determining if a generalized topological 

space qualifies as a $T_{3.5}$ space: namely, such spaces are precisely the subspaces derived 

from the powers of a certain natural generalized topology on the interval $[0,1]$.   Spaces with a 

minimum of two points may accommodate dense subspaces.   Furthermore, $T_{3.5}$ generalized 

topological spaces may be precisely described as the dense subspaces of compact $T_4$ 

generalized topological spaces.   We demonstrate that normalcy yields productivity in extended 

topological spaces.   We establish the equivalent of the Tychonoff product theorem for compact 

generalized topological spaces.   We demonstrate that Lindelöfness, as well as $\kappa$-

compactness, is advantageous for generalized topological spaces.   We define a generalized 

topology on any ordered set and establish the notion of continuous maps between two such 

generalized topological spaces. Specifically, for ordered sets with cardinality greater than or equal 

to 2, the continuous maps are the monotonous mappings that are continuous with regard to the 

order topologies of the respective sets.   We examine the connection between the sums and 

subspaces of generalized topological spaces and the methods used to define generalized 

topological spaces.  
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Han, Sang-Eon. (2015). The current study introduces two novel mappings, namely an M-map and 

an M-isomorphism, which serve as extensions of a Marcus Wyse continuous map (abbreviated as 

M-continuous map) and an M-homeomorphism. This is necessary because the rigidity of an M-

continuous map restricts certain geometric transformations from being classified as M-continuous 

maps (see to Remark 3.2).   Moreover, it demonstrates that an M-map and an M-isomorphism are 

synonymous with a (digitally) 4-continuous map and a (digitally) 4-isomorphism, respectively.   

Furthermore, the study demonstrates that M is isomorphic to if and only if , where denotes a simple 

closed Marcus Wyse adjacent (abbreviated as MA-) curve with l members in .   The paper 

concludes that MAC is equivalent to (as stated in Theorem 6.7). MAC is a category that consists 

of M-topological spaces with MA-adjacency as objects, and all M-maps as morphisms for every 

ordered pair of objects. On the other hand, is a category that consists of digital images in , and 

(digitally) 4-continuous maps as morphisms.   In addition, we introduce the concept of an MA-

retract for the purpose of condensing 2D digital environments.   With this novel methodology, we 

can comprehensively analyze and categorize 2D digital topological spaces and 2D digital 

photographs.  

Di Concilio, Anna. (2006). Consider X as a Tychonoff space. Let H(X) be the group of all self-

homeomorphisms of X, where composition is the normal operation. The evaluation function 

e:(f,x)∈H(X)×X→f(x)∈X is defined as follows.   Admissible topologies on H(X) are those that 

provide continuation of the evaluation function.   Group topologies are topologies on H(X) that 

are compatible with the group operations.   If X is a locally compact T2 space, then there exists a 

minimum among all permissible group topologies on H(X).   The presented topology may be 

characterized as a set-open topology, which aligns with the compact-open topology when X is 

locally linked.   We demonstrate identical outcomes in two fundamentally distinct scenarios of 

rim-compactness.   The former refers to a scenario in which X is both rim-compact T2 and locally 

linked.   The latter refers to the scenario in which X is in agreement with the rational number space 

Q, which is endowed with the euclidean topology.   The lowest admissible group topology on H(X) 

in the first example is the closed-open topology, which is specified by all closed sets with compact 

borders that are contained inside a component of X.   Furthermore, if X is a separable metric space, 

it is also Polish.   The closed-open topology is the lowest admissible group topology on H(Q) in 

the rational case.   The smallest acceptable group topology on H(X) is intricately connected to the 

Freudenthal compactification of X in both circumstances.   The Freudenthal compactification is 

essential in rim-compactness, serving a similar purpose as the one-point compactification does in 

local compactness.   For the rational situation, we examine whether the fine or Whitney topology 

on H(Q) creates a group topology on H(Q) that is admissible and stronger than the closed-open 

topology. 

III. STRONGLY MINIMAL GENERALIZED HOMEOMORPHISMS IN 

MINIMAL STRUCTURE SPACES 
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 * Α-Closed Maps  

In this section,  * α-closed maps and  * α- We first introduce open maps and go over some of 

its characteristics. It is shown that any two  * α-closed ( * α-open) maps need not be a  * α-

closed ( * α-open) map.  

Definition A map f: (X, τ) → (Y, ) is called  * α-closed if f(A) is  * α-closed in (Y, ) for 

each closed set A in (X, τ). 

Example Let X = Y = {a, b, c}, τ = {, {a}, {b}, {a, b}, X} and  = { , {a}, {b}, {a, b}, {a, c}, 

Y}. Let f: (X, τ) → (Y, ) be the identity map. Then f is a  * α-closed map.  

Proposition   

(i) Every closed map f : (X, τ) → (Y, ) is a  * α-closed map.  

(ii) Every α-closed map f : (X, τ) → (Y, ) is a  * α-closed map.  

(iii) Every regular closed map f : (X, τ) → (Y, ) is a  * α-closed map.  

Proof: Since every closed set, α-closed set and regular closed set is a  * α- sealed, the expected 

outcome occurs. As may be seen from the following example, the opposite of the propositions in 

the aforementioned premise need not be true. 

 * α-open maps  

Definition A map f : (X, τ) → (Y, ) is called  * α-open if f(A) is  * α-open in (Y, ) for each 

open set A in (X, τ). 

Example Let X = Y = {a, b, c}, τ = {, {a}, {b}, {a, b}, X} and  = {, {a}, {b}, {a, b}, {a, c}, 

Y}. Let f : (X, τ) → (Y, ) be the identity map. Then f is a  * α-open map.  

Theorem Let f : (X, τ) → (Y, ) be a bijective map. It follows that the following assertions are 

interchangeable. 

(a) f is a  * α-open map  

(b) f is a  * α-closed map  

(c) f -1 : (Y, ) → (X, τ) is  * α-continuous.  
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Proof: (a)  (b) Let A be any closed set in (X, τ). Then X – A is open in (X, τ). By (a), f(X – A) 

= Y – f(A) is  * α-open in (Y, ). Therefore f(A) is  * α-closed in (Y, ) and hence f is  * α-

closed.  

(b)  (c) Let A be any closed set in (X, τ). Since f is  * α-closed, f(A) = (f-1 ) -1 (A) is  * α-

closed in (Y, ). Hence f-1 is  * α-continuous.  

(c)  (a) Let A be an open set in (X, τ). By (c), f(A) = (f-1 ) -1 (A) is  * α-open in (Y, ). Hence 

f is  * α-open.  

IV. CONCLUSION 

The study of topology-preserving transformations, particularly focusing on substantially minimum 

generalized homeomorphisms, has been a profound and transformational examination of 

mathematical structures.   This work has clarified the essential function of transformations that 

protect topological characteristics, offering a perspective through which the complex connections 

inside mathematical spaces may be understood.   Strongly minimum generalized 

homeomorphisms, which go beyond ordinary homeomorphisms, have become a potent tool, 

providing a sophisticated comprehension of structural spaces in several mathematical fields.  
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