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Abstract 

The evolution of decentralized file-sharing systems has highlighted the critical need for secure, 

scalable, and reliable data distribution architectures. Traditional peer-to-peer (P2P) models 

often fall short in ensuring trust, data integrity, and efficient resource discovery in the absence 

of central authority. This review synthesizes existing research on integrating blockchain 

technologies with Inter Planetary File System (IPFS) protocols to address these limitations. 

Emphasis is placed on blockchain-enabled trust models, consensus mechanisms, encrypted 

data transmission, and clustering strategies that enhance node verification, file traceability, and 

system scalability. Furthermore, the role of reputation aggregation and proof-of-storage 

techniques in securing file-sharing operations is examined. Gaps identified in current 

frameworks include inadequate onboarding processes, insufficient correlation between data 

sensitivity and proximity-aware clustering, and limited integration of consensus protocols with 

lightweight cryptographic methods. This review aims to guide future research directions 

toward more resilient, transparent, and efficient decentralized file-sharing ecosystems. 

Keywords 
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1. Introduction to Decentralized File-Sharing Systems 

1.1 Evolution of Peer-to-Peer (P2P) File-Sharing 

File-sharing has evolved from early centralized systems to more distributed models. 

Centralized systems like Napster relied heavily on a central server to index and manage shared 

files, which created a single point of failure and exposed the system to legal and operational 

vulnerabilities [1]. This limitation led to the emergence of decentralized P2P networks such as 

mailto:rathnam1947@gmail.com


Page 222 

 

Vol 12 Issue 11, Nov2023 ISSN 2456 – 5083 

  
        
   
 
 
 

 

 

Gnutella and BitTorrent, which shifted the burden of file hosting and indexing to individual 

nodes, enhancing robustness and scalability [2]. 

In decentralized P2P systems, nodes collaborate to distribute files, with each node potentially 

acting as both a client and a server. This model significantly reduces dependence on central 

entities, offering better fault tolerance and load distribution. BitTorrent, for example, 

popularized the concept of swarm-based file sharing, where each peer can download and 

upload pieces of a file concurrently, greatly improving efficiency. 

1.2 Limitations of Traditional Centralized and Untrusted P2P Models 

Despite their architectural improvements, traditional decentralized P2P systems suffer from 

several inherent limitations. A key issue is the absence of a built-in trust mechanism—nodes 

are anonymous and unverified, making the system susceptible to various attacks such as data 

poisoning, Sybil attacks, and free-riding behavior [3][4]. 

Moreover, there is often no reliable way to ensure the integrity and authenticity of shared data. 

Since any node can host or modify a file, users have no guarantee that the file received is the 

correct or original version unless separate verification mechanisms are implemented. 

Privacy and data security also remain concerns. Most legacy P2P systems do not support end-

to-end encryption by default, leaving shared content exposed during transit. In addition, there's 

no persistent record of transactions or node behavior, making it difficult to audit or penalize 

malicious actors. 

To overcome these challenges, emerging architectures integrate blockchain technology, 

offering immutable audit trails, verifiable smart contracts, and decentralized consensus models 

[5]. These hybrid systems aim to preserve the scalability of P2P networks while addressing 

their trust and security gaps. 

2. Blockchain Integration in File-Sharing Architectures 

2.1 Overview of Blockchain Fundamentals 

Blockchain is a decentralized, append-only ledger that records transactions in a transparent and 

tamper-resistant manner. Each block in the chain contains a cryptographic hash of the previous 

block, timestamped records, and transaction data, which collectively ensure the immutability 

and chronological order of records [6]. Blockchain networks are maintained by distributed 

nodes that validate transactions through consensus mechanisms such as Proof-of-Work (PoW), 

Proof-of-Stake (PoS), or other variants [7]. The decentralized nature of blockchain eliminates 
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the need for trusted intermediaries, making it a promising foundation for secure and transparent 

file-sharing systems. 

In decentralized file-sharing, blockchain serves not as a data storage mechanism, but as a 

control and verification layer that governs access, authentication, and transaction integrity. It 

allows nodes in a peer-to-peer (P2P) network to interact in a trustless environment while 

maintaining a verifiable record of all activities. 

2.2 Smart Contracts in File-Sharing 

Smart contracts are self-executing scripts stored on the blockchain that automatically enforce 

predefined rules and conditions without external intervention [8]. In the context of file-sharing, 

smart contracts can facilitate and enforce agreements between nodes regarding file storage, 

retrieval, and access permissions. 

For example, a user could publish a smart contract specifying conditions under which a file can 

be accessed—such as payment confirmation, authentication of the requesting node, or proof-

of-storage by the hosting node. This automation removes the reliance on third-party verification 

and adds an auditable layer of logic to the system. 

Furthermore, smart contracts can handle payment distribution, trigger penalties for non-

compliance, or revoke access rights dynamically, thereby enhancing security, efficiency, and 

transparency in decentralized file-sharing architectures. 

2.3 Trust Anchoring via Blockchain 

One of the most significant advantages of blockchain in file-sharing is its ability to anchor trust 

in a decentralized ecosystem. By maintaining an immutable ledger of node behavior, 

transaction history, and consensus-based validations, blockchain helps establish verifiable trust 

relationships among nodes without relying on centralized authorities [9]. 

Trust anchoring can be further enhanced through integration with reputation systems. Nodes 

that consistently fulfill file storage or retrieval agreements are rewarded or given higher trust 

scores, while malicious or inactive nodes can be penalized or excluded. This forms a trust-

driven ecosystem where accountability is enforced through cryptographic proofs and historical 

records. 

Blockchain also mitigates the risks of data tampering and unauthorized access by enabling 

digital signatures, content hashing, and secure time-stamping, ensuring that data integrity and 

origin can be validated at any time [10]. 

3. Trust Models in Decentralized Networks 
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3.1 Reputation-Based Trust Systems 

In decentralized file-sharing networks, establishing trust among anonymous peers is critical to 

prevent malicious activity and ensure consistent participation. Reputation-based trust models 

offer a scalable solution by evaluating nodes based on their historical behavior, such as 

successful file transfers, data availability, and compliance with protocol rules [11]. 

These systems typically assign a dynamic trust score to each node, which influences decisions 

such as peer selection, data replication, and routing. Trust scores are calculated using metrics 

like response time, upload/download ratios, and feedback from other peers [12]. Over time, 

nodes with higher reputation gain priority in network tasks, while unreliable nodes are 

penalized or excluded. 

A major advantage of reputation-based systems is their adaptability—they continuously evolve 

based on real-time behavior. However, they can be vulnerable to collusion and whitewashing, 

where malicious nodes artificially inflate their scores or frequently reset identities. 

3.2 Consensus-Based Trust Validation 

Consensus mechanisms play a central role in validating transactions and maintaining the 

integrity of decentralized networks. Beyond just ledger updates, consensus algorithms such as 

Proof-of-Work (PoW), Proof-of-Stake (PoS), and Practical Byzantine Fault Tolerance (PBFT) 

can also serve as foundations for trust validation among nodes [13]. 

In consensus-based trust validation, nodes that contribute to securing the network by solving 

cryptographic puzzles or staking assets are inherently trusted due to their commitment of 

computational or economic resources. This makes it costly for malicious entities to influence 

the network, thereby reinforcing trust without relying on subjective or external evaluations. 

Moreover, consensus models often work in conjunction with smart contracts to verify 

compliance with file-sharing agreements, such as proof-of-delivery or proof-of-storage, before 

trust can be extended to a node [14]. 

3.3 Sybil Resistance Techniques 

One of the most serious threats to decentralized networks is the Sybil attack, where a single 

adversary creates multiple fake identities to gain disproportionate influence over the system 

[15]. In the context of file-sharing, Sybil nodes can disrupt routing, alter reputation scores, or 

flood the network with malicious content. 

Several Sybil resistance strategies have been proposed to address this. Proof-of-Resource 

models (e.g., proof-of-storage, proof-of-bandwidth) require nodes to demonstrate ownership 
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of finite resources, making it impractical for a single attacker to support numerous fake 

identities [16]. Identity verification via social graphs or trusted hardware (e.g., Intel SGX) has 

also shown promise in limiting Sybil attacks. 

Another emerging strategy is the integration of blockchain-based identity systems where node 

identities are recorded and validated on-chain. These identities can be tied to economic or 

cryptographic proofs, reducing the likelihood of Sybil proliferation while preserving 

anonymity and decentralization. 

4. Inter Planetary File System (IPFS) Overview 

4.1 IPFS Architecture and Content Addressing 

The Inter Planetary File System (IPFS) is a decentralized protocol designed to create a peer-to-

peer method of storing and sharing hypermedia in a distributed file system. Unlike traditional 

HTTP-based systems that rely on location-based addressing (e.g., URLs), IPFS employs 

content-based addressing, where each file is identified by a unique cryptographic hash 

generated from its contents [17]. 

This approach ensures that content cannot be altered without changing its address, providing 

inherent data integrity and version control. When a user requests a file, IPFS retrieves it from 

any node that stores the matching hash, improving redundancy and availability while reducing 

dependency on a single server or host [18]. 

IPFS nodes form a distributed network in which content is discovered using a Distributed Hash 

Table (DHT), enabling efficient routing and retrieval of content even in dynamic environments. 

4.2 Merkle Directed Acyclic Graph (Merkle DAG) Structure 

At the core of IPFS lies the Merkle Directed Acyclic Graph (Merkle DAG) data structure. 

In a Merkle DAG, each node (or block) contains a cryptographic hash of its contents and links 

to its children, forming a tamper-evident, hierarchical structure [19]. 

This design supports deduplication, as identical data chunks are stored only once, and provides 

verifiability across the network. In IPFS, a file is split into multiple chunks, each of which is 

stored as a separate object with its own hash. A root object then links these chunks, effectively 

representing the entire file structure in a verifiable and efficient manner. 

Merkle DAGs also facilitate immutability and transparency, enabling nodes to verify that a 

file has not been tampered with by simply recalculating and comparing the hashes. 

4.3 Strengths and Limitations of IPFS 



Page 226 

 

Vol 12 Issue 11, Nov2023 ISSN 2456 – 5083 

  
        
   
 
 
 

 

 

IPFS offers several advantages over traditional and centralized file-sharing models. Some of 

its core strengths include: 

• Decentralization: Eliminates central points of failure, improving robustness and 

censorship resistance. 

• Content Integrity: Content addressing and Merkle DAG structures ensure that data 

cannot be modified undetected. 

• Bandwidth Efficiency: Content is fetched from the nearest or fastest peer, reducing 

latency and server load. 

• Offline Availability: Content remains accessible even if the original publisher is 

offline, as long as a peer holds a copy. 

However, IPFS is not without limitations: 

• Lack of Incentive Mechanisms: IPFS does not natively incentivize nodes to host or 

serve content, which can lead to low content persistence over time [20]. 

• Privacy and Access Control: IPFS lacks built-in encryption and access control, 

requiring external systems to manage secure data sharing. 

• Storage Overhead: Splitting and hashing large files introduces computational and 

storage overhead, especially on resource-constrained devices. 

• Scalability in Large Networks: The DHT-based discovery mechanism may suffer 

from latency in extremely large or volatile peer networks. 

Despite these challenges, IPFS forms a strong foundation for building decentralized file-

sharing architectures when combined with complementary technologies like blockchain and 

smart contracts. 

Certainly! Below are Sections 5 and 6 of your review paper, each with detailed subheadings 

and references continuing from [21]. 

 

5. Reputation Aggregation Techniques 

5.1 Node Behavior Monitoring 

Effective reputation systems rely on continuous monitoring of node behavior in a P2P network 

to determine reliability and trustworthiness. Behavior metrics typically include uptime, data 

delivery success, responsiveness, and protocol compliance [21]. Observations can be direct 

(self-collected) or indirect (reported by peers), and both forms play a role in identifying 

malicious, selfish, or uncooperative nodes. 
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Behavior monitoring can also be integrated with blockchain-based audit logs, where 

interactions between nodes are recorded immutably, enabling transparent and verifiable 

behavioral assessments [22]. These logs provide a valuable source of data to analyze trends in 

node performance and trust evolution. 

5.2 Trust Score Computation Methods 

Reputation systems compute trust scores using various techniques, ranging from weighted 

averages and Bayesian models to machine learning and fuzzy logic [23]. The choice of method 

often depends on the type of network, application domain, and threat landscape. 

• Weighted Average Models assign trust values based on the frequency and quality of 

interactions, adjusting the impact of recent behavior more heavily. 

• Bayesian Models incorporate prior expectations and update trust levels as new 

observations are made. 

• Fuzzy Logic Systems manage uncertainty and allow for more flexible trust 

assessments in dynamic P2P environments. 

Regardless of the method, the reputation computation must be resistant to manipulation and 

adaptable to changing behaviors, allowing the system to respond quickly to deviations and 

anomalies. 

5.3 Prevention of Malicious Node Collusion 

Collusion among malicious nodes poses a significant threat to reputation systems, as it enables 

bad actors to boost each other’s scores artificially. Techniques to prevent this include: 

• Transitive Trust Limiting: Reduces reliance on third-party recommendations, 

especially from closely linked nodes. 

• Interaction Authenticity Verification: Uses blockchain or cryptographic proof to 

validate that an interaction actually occurred [24]. 

• Diversity-Aware Trust Aggregation: Encourages trust data from diverse, unlinked 

nodes to reduce bias. 

Some advanced systems employ game-theoretic models or machine learning to detect 

abnormal behavior patterns and expose collusion attempts automatically. 

6. Consensus Mechanisms and Cryptographic Techniques 

6.1 Proof-of-Work vs. Proof-of-Stake 

Consensus algorithms ensure agreement across decentralized nodes about the system state. Two 

of the most common methods are: 
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• Proof-of-Work (PoW): Requires solving computational puzzles to validate 

transactions, offering high security but with high energy and resource consumption 

[25]. 

• Proof-of-Stake (PoS): Selects validators based on the amount of cryptocurrency they 

"stake," reducing computational overhead but potentially concentrating power among 

wealthier nodes [26]. 

In decentralized file-sharing, PoW may be unsuitable for lightweight nodes, whereas PoS and 

other energy-efficient mechanisms are gaining popularity for integration with resource-aware 

P2P systems. 

6.2 Lightweight Consensus for P2P 

Given the resource constraints of many P2P networks, lightweight consensus protocols are 

often necessary. Protocols such as Practical Byzantine Fault Tolerance (PBFT), Delegated 

Proof-of-Stake (DPoS), and Raft provide faster finality with lower overhead [27]. 

These models reduce the complexity of achieving agreement among nodes by minimizing the 

number of required validators or simplifying communication. They are particularly suitable for 

file-sharing applications where frequent consensus is needed on file availability, integrity 

validation, or access permissions. 

6.3 Cryptographic Encryption in File Transmission 

Security in decentralized file-sharing is incomplete without robust cryptographic protections. 

Encryption ensures that even if data is intercepted, its contents remain confidential. 

• Symmetric encryption (e.g., AES) is used for efficient bulk data transmission. 

• Asymmetric encryption (e.g., RSA, ECC) supports secure key exchange and digital 

signatures. 

• Hashing algorithms (e.g., SHA-256) verify data integrity and generate content-

addressable IDs, as seen in IPFS. 

Additionally, zero-knowledge proofs and homomorphic encryption are emerging to enable 

secure file sharing without exposing content or metadata [28]. 

Certainly! Below are Sections 7 and 8 of your review paper with detailed subheadings, and 

references starting from [29] as requested. 

 

7. Proximity-Aware Clustering Algorithms 

7.1 Clustering Based on Node Proximity 
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In decentralized file-sharing networks, latency and bandwidth efficiency can be greatly 

enhanced by grouping nodes based on physical or network proximity. Proximity-aware 

clustering ensures that file replication, retrieval, and dissemination occur among 

geographically or topologically close peers [29]. 

Several clustering algorithms such as K-means, DBSCAN, and hierarchical clustering have 

been adapted to the P2P context to form logical zones or clusters. These zones minimize long-

distance data transfer and optimize content delivery by prioritizing nearby nodes for storage 

and retrieval tasks [30]. 

Routing tables and DHT lookups are also enhanced when peers are organized into proximity-

based subgroups, improving lookup speed and reducing network congestion. 

7.2 Data Sensitivity and Locality-Aware Storage 

Certain applications (e.g., healthcare, legal records) require data to be stored in specific 

jurisdictions or within trusted clusters. Locality-aware storage mechanisms consider not just 

proximity but also data sensitivity and regulatory compliance when deciding where to 

replicate or distribute files [31]. 

Decentralized networks now integrate metadata tagging and policy-driven clustering, 

enabling intelligent decisions about where and how data is stored. For example, sensitive data 

may be kept within secure and reputation-verified clusters, while public or non-sensitive data 

can be widely replicated across global nodes. 

7.3 Optimization for Low-Latency Access 

Clustering also serves as a foundational mechanism for latency optimization. By storing 

frequently accessed files within high-demand clusters and replicating popular content across 

edge nodes, decentralized file-sharing systems can significantly reduce average data retrieval 

time [32]. 

Machine learning-based predictors are increasingly being used to forecast user access patterns, 

thereby guiding replication and prefetching strategies. Caching mechanisms can also be 

adapted to the cluster level to serve recurring queries faster. 

 

8. Proof-of-Storage and Data Integrity 

8.1 Proof-of-Replication (PoRep) 
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Proof-of-Replication (PoRep) is a cryptographic proof that a node is storing a unique, 

dedicated copy of a dataset. It is particularly important in decentralized storage networks like 

Filecoin to prevent nodes from pretending to store multiple copies of the same data [33]. 

PoRep involves encoding data in a verifiable way such that each copy is unique. This ensures 

not only that data is stored but also that multiple replicas genuinely exist, enabling verifiable 

redundancy in the system. 

8.2 Proof-of-Spacetime (PoSt) 

Proof-of-Spacetime (PoSt) extends the idea of PoRep by proving that a node has been 

continuously storing a piece of data for a specified duration. This time-based proof is essential 

for verifying long-term storage commitments in systems where availability is tied to incentives 

or contractual obligations [34]. 

PoSt typically requires nodes to periodically generate and submit proofs that demonstrate 

uninterrupted data possession over time. These proofs are then validated on-chain or by a third-

party verifier. 

8.3 Tamper-Proof Storage Techniques 

To prevent unauthorized data modification or deletion, decentralized networks employ a 

variety of tamper-proofing methods, including: 

• Merkle trees for verifying data blocks. 

• Immutable storage via content addressing in systems like IPFS. 

• Blockchain anchoring, where storage proofs or hashes are periodically committed to 

a blockchain ledger for auditability [35]. 

Together, these approaches provide verifiable guarantees that data remains intact and unaltered 

throughout its lifecycle, even when distributed across untrusted nodes. 

9. Comparative Analysis of Existing Systems 

Decentralized file-sharing systems are commonly evaluated based on key criteria including 

trust, latency, scalability, and resilience. Trust mechanisms ensure node reliability and data 

integrity through reputation systems, cryptographic proofs, and consensus protocols. These are 

crucial to maintain a secure and robust network environment. Latency affects the speed of file 

retrieval and overall network responsiveness, often improved through node proximity 

awareness, caching, and clustering techniques. The scalability of the system determines how 

well it can handle growth in the number of participating nodes and the volume of stored data 

without performance degradation. Lastly, resiliencemeasures fault tolerance to node failures, 
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malicious attacks, and churn by implementing data redundancy and tamper-proof storage 

methods [36], [37]. 

Table1: Parameters Comparison 

Evaluation Criteria Description 

Trust Mechanisms ensuring node reliability and data integrity through reputation 

systems, cryptographic proofs, and consensus protocols. 

Latency Speed of file retrieval and network responsiveness, influenced by node proximity, 

caching, and clustering algorithms. 

Scalability Ability of the system to efficiently support growth in node numbers and data 

volume. 

Resilience Fault tolerance to node failures, attacks, and churn, including data redundancy and 

tamper-proof storage techniques. 

Among notable implementations, Filecoin stands out as a blockchain-based decentralized 

storage network that employs Proof-of-Replication (PoRep) and Proof-of-Spacetime (PoSt) to 

cryptographically verify data integrity and availability. Filecoin also introduces economic 

incentives to encourage honest participation by storage providers [36]. 

Storj utilizes encrypted and sharded file storage within a decentralized network and applies a 

reputation-based node selection process. Its geographically distributed nodes help achieve low-

latency access and improved data availability [37]. 

Sia, another prominent platform, leverages smart contracts to formalize storage agreements 

and ensures distributed storage with redundancy. It integrates cryptographic proofs to verify 

file storage continuously and is supported by an open-source ecosystem, promoting 

transparency and extensibility [38]. 

Notable 

Implementations 

Key Features 

Filecoin Blockchain-based decentralized storage; Proof-of-Replication 

(PoRep) and Proof-of-Spacetime (PoSt) ensuring data integrity and 

availability; economic incentives for storage providers. 

Storj Encrypted, sharded file storage; decentralized network with 

reputation-based node selection; low-latency access through 

geographically distributed nodes. 
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Sia Smart contracts for storage agreements; distributed storage with 

redundancy; cryptographic proofs for file storage verification; open-

source ecosystem. 

10. Identified Research Gaps and Challenges 

Despite considerable advancements in decentralized file-sharing frameworks, several key 

challenges remain unresolved. One major gap lies in the onboarding and verification of nodes 

within the network. Current mechanisms often struggle with scalability and lack the robustness 

needed to efficiently validate nodes in large, dynamic environments. This limitation can lead 

to vulnerabilities where malicious or unreliable nodes might degrade system integrity. 

Another significant challenge is the inadequacy of adaptive clustering models. Many existing 

clustering techniques do not effectively account for the dynamic nature of peer-to-peer 

networks or the varying sensitivity of data being shared. Without adaptive and context-aware 

clustering, systems face inefficiencies in query routing, data accessibility, and network resource 

utilization. 

Additionally, the development of lightweight yet secure consensus protocols remains a pressing 

need. Most traditional consensus algorithms, such as Proof-of-Work, impose high 

computational and energy costs, making them unsuitable for resource-constrained devices 

commonly found in decentralized networks. There is a critical requirement for consensus 

mechanisms that balance security, efficiency, and scalability to maintain data integrity while 

minimizing overhead. 

Addressing these research gaps is essential to realize fully secure, efficient, and scalable 

decentralized file-sharing systems capable of supporting diverse applications and evolving 

network conditions. 

11. Conclusion 

This review highlights the significant advancements and emerging trends in decentralized file-

sharing systems, emphasizing the integration of blockchain technology, reputation-based trust 

models, and distributed storage protocols like IPFS. These innovations collectively improve 

the security, scalability, and efficiency of peer-to-peer networks. However, critical challenges 

remain, including the need for more robust node onboarding mechanisms, adaptive clustering 

strategies that account for network dynamics and data sensitivity, and the development of 

lightweight, secure consensus protocols suited for resource-constrained environments. 

Addressing these challenges will be pivotal in advancing decentralized file-sharing frameworks 
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that are not only secure and reliable but also scalable and efficient. Future research focusing on 

these areas can enable the design of next-generation systems capable of meeting the increasing 

demands of distributed applications and ensuring seamless, trustworthy data sharing in 

decentralized ecosystems. 
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