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ABSTRACT: 

 Over the years, numerous software defect prediction models have been developed to 

tackle the challenges inherent in software project development. Emphasizing software 

reliability is crucial for enhancing overall software quality, as it involves the analysis and 

projection of software quality based on defect prediction. Many software enterprises are 

actively striving to enhance software quality while concurrently reducing software 

development expenses. Among the diverse models available, the Pareto Type IV model 

stands out as a pivotal approach for scrutinizing software flaws using generated data. 

Complementing this, Statistical Process Control (SPC) emerges as a statistical technique 

offering contextual quality assurance. In this research endeavor, an enhanced software defect 

prediction model takes center stage, serving to anticipate errors that materialize during 

distinct phases of software development. This innovative model seeks to leverage insights 

from historical data, refined algorithms, and a comprehensive understanding of influencing 

factors. Through such proactive measures, the goal is to optimize software quality, minimize 

defects, and streamline the software development lifecycle. 

KeyWords: Pareto type IV distribution model, NHPP, MLE method, Statistical Process 

Control, Order Statistics. 

INTRODUCTION: 

 The concept of software reliability 

emerged as a response to the growing 

importance of software systems in various 

industries and the realization that software 

failures could lead to significant economic 

losses, safety hazards, and disruptions. As 

computers became more powerful and 

software systems grew in complexity, 

software began to be used in critical 

applications such as aerospace, defense, 

healthcare, and finance. Failures in these 

systems could have catastrophic 

consequences, highlighting the need for 

increased focus on reliability. Researchers 

began to develop mathematical models to 

analyze and predict software reliability, 

drawing inspiration from reliability 

engineering principles used in hardware 

systems. The concept of “software aging” 

gained traction during this decade. It was 

observed that software systems often 

became less reliable over time due to 

factors like resource leaks, memory 

corruption, and performance degradation. 

This led to the development of reliability 

growth models that aimed to track and 

improve software reliability over its life 

cycle. SRM, also referred to as the 

numerical model in this context, plays a 

crucial role in enhancing error detection 

subsequent to code modifications [1]. 

These models primarily concentrate on 

determining the necessary testing efforts 

designated for [2]. 

The growth of software-intensive systems, 

including embedded systems, web 

applications, mobile apps, and cloud 
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computing, further emphasized the 

importance of software reliability. Agile 

and DevOps methodologies introduced 

new challenges and opportunities for 

integrating reliability practices into the 

software development life cycle. Today, 

software reliability is an integral part of 

software engineering and quality assurance 

practices. Techniques like continuous 

integration, automated testing, and 

continuous monitoring help in identifying 

and addressing reliability issues 

throughout the development process. The 

frequency of errors that occur while 

debugging software is the basis for several 

software reliability models. In reliability 

engineering, the NHPP is particularly 

useful for modeling the failure rates of 

systems or components that change over 

time due to various factors such as 

environmental conditions, usage patterns, 

and design changes. The key idea behind 

NHPP is that the failure rate is not constant 

but varies as a function of time.  

In software projects, failures are a 

common occurrence during both the 

development and execution phases [3]. 

Determining software reliability can be a 

challenging endeavor due to the inherent 

complexity of software types. Identifying 

an appropriate reliability model often 

hinges on the selection of reliable models. 

The notion of estimated software lacks a 

definitive description [4]. In cases where 

direct reliability measurement is not 

feasible, assessing reliability attributes 

provides an alternative avenue. 

The NHPP model incorporates an 

“intensity function” or “failure rate 

function” that describes how the failure 

rate changes over time. This function can 

take various forms depending on the 

specific characteristics of the system being 

analyzed. The NHPP model offers the 

capability to estimate the anticipated 

quantity of failures occurring within a 

specific timeframe or to forecast the 

prospective failure rates of a system by 

drawing insights from historical data. 

Order statistics are useful in a wide range 

of scenarios. Many books show how they 

are used in characterization problems, 

outlier identification, life-testing, data 

compression, linear estimation, system 

reliability studies, survival analysis, and 

many other domains. This study proposes 

a control mechanism derived from the 

mean value function of a Pareto type IV 

distribution, employing a Non-

Homogeneous Poisson Process (NHPP) as 

its foundation. The control strategy is 

devised using order statistics applied to the 

cumulative quantity observed in time-

based domain failure data. The research 

employs live datasets to validate the 

Pareto type IV distribution model in 

conjunction with the order statistics 

technique. The paper concludes by 

summarizing its findings and implications. 

RELATED WORK 

In a study by G. Sridevi et al., [5], they 

introduced the utilization of the Burr Type 

XII distribution model to assess software 

quality through Statistical Process Control 

(SPC). Meanwhile, B. Amulya and their 

coauthors [6] applied Statistical Process 

Control (SPC) for failure evaluation and 

proposed the use of the Pareto Type II 

distribution model along with an order 

statistic approach. The assessment of 

High-Level Design (HLD) was carried out 

using NHPP-based time-domain data. This 

approach combines both models to analyze 

failure data and employs control charts to 

visualize performance. 

Furthermore, Y. Wu and their team [7] 

recommended an advanced software 

testing strategy that highlights the SRAT 

(Software Reliability Assessment Tool) as 

a more efficient method for generating 

reliable testing outcomes. This strategy 
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also assesses the functionality and 

programs specified within the software 

code. 

In their study, M. Nafreen et al., [8] 

introduced a novel approach that combines 

software defect tracking with the Software 

Reliability Growth Model (SRGM). This 

integrated methodology was applied 

within a NASA project to identify and 

analyze a multitude of software flaws and 

their subsequent resolution. The suggested 

paradigm initiates the NASA software 

defect lifecycle's 13 distinct steps, 

demonstrating improved performance. 

K.K. San and coauthors [9] introduced a 

novel SRGM method that employs 

features from completed projects to predict 

bugs in ongoing projects. Their approach 

trains similar initiatives to enhance bug 

identification and employs an RNN-based 

DLSTM model for prediction. 

C. Guo and et al., [10] presented a novel 

software reliability growth model focused 

on determining the severity levels of 

prevalent problems. These levels are 

analyzed to gauge fault severity and 

visualized using a logistic curve. Y. Liu 

and coauthors [11] developed a framework 

for fault elimination to enhance the 

accuracy of time delay approaches for 

software dependability using half-grouped 

datasets. 

In their research, J. Yang and their team 

[12] considered the incorporation of delays 

in fault repair time using a time delay 

model when analyzing the failure 

processes across various software versions. 

M. Cinque and their collaborators [13] 

introduced the Debugging-Workflow-

Aware Software Reliability Growth 

Approach (DWA-SRGM), which is 

specifically designed to address bugs 

within software projects. Meanwhile, H. 

Okamura and colleagues [14] presented an 

enhanced framework that establishes the 

correlation between fault discovery times 

and the durations required for remediation. 

Finally, H. Sukhwani and coauthors [15] 

unveiled an SRGM tailored for flight 

management software utilized in space 

missions, demonstrating superior 

performance in real-time software 

applications. 

ORDER STATISTICS 

Order statistics involve arranging a sample 

of random variables in ascending order. 

Put simply, when you organize 

observations from a random variable from 

smallest to largest, you obtain order 

statistics. These statistics offer insights 

into the distribution of the random variable 

and find application in diverse statistical 

analyses. Denoted as "X_{(1)}, X_{(2)}, 

..., X_{(n)}," order statistics are derived 

from a sample of size n from a random 

variable X (consisting of observations x1, 

x2, ..., xn). Here, X_{(1)} is the smallest, 

X_{(2)} is the second smallest, and 

X_{(n)} is the largest observation. 

Software failure processes are evaluated 

using failure control principles grounded 

in inter-failure data accumulation. 

Following data transformation, failure data 

is segmented into 4 and 5 cumulative 

intervals. The time intervals between 

successive failures illustrate the failure 

time data. Typically, these failure time data 

are sorted into non-overlapping subgroups 

of size 4 or 5 and summed when waiting 

time for failure isn't critical. 

Consider grouping 200 inter-failure times 

into 40 disjoint subgroups, each 

comprising 5 observations. The sum of 

each subgroup represents the interval 

between every fifth failure, also known as 

the fifth order statistics when dealing with 

five observations in a sample. 

In our research, we employed the Pareto 

Type IV model for r = 4 and r = 5, 
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respectively. The parameters and 

corresponding values, computed using an 

iterative technique for cumulative time 

between failures data, are denoted as the 

maximum likelihood estimates 'a', 'b,' and 

'c.' These estimates facilitate the 

calculation of m(t). 

ILLLUSTRATING THE MLE 

A. Pareto IV distribution Model 

The research suggests estimating 

software reliability based on order 

statistics and a Pareto type IV distribution 

model. It is often used in various fields 

such as economics, finance, and 

engineering to model heavy-tailed 

phenomena where extreme values occur 

more frequently than in a normal 

distribution. The mean value function and 

intensity function for the Pareto type IV 

NHPP model are defined as follows. The 

formula for the Cumulative Distribution 

Function is expressed as: 

1

0
( ) ( ) 1 1

b
t

m t t dt a
c



    
      

     
  

                                                         

( )a F t  

B. Mathematical Derivation for 

Parameter Estimation 

We employ an order statistics technique to 
derive expressions for estimating the 
parameters of the Pareto type IV model 
based on time-domain data. Parameter 
estimation is a crucial step in anticipating 
software reliability. Maximum Likelihood 
Estimation (MLE) aims to determine the 
parameter values that maximize the 
likelihood or log-likelihood function. In 
mathematical terms, this entails finding 
the values that satisfy the condition 

(log ) / ( ) 0likelihood parameters    . 

This optimization process is typically 
carried out using algorithms like gradient 
descent or Newton's method. 

The primary objective of Maximum 
Likelihood parameter estimation is to 

select the parameters that maximize the 
likelihood (probability) of the observed 
sample data. In essence, MLE approaches 
are versatile and can be applied to a wide 
array of models and data sources. 

The mean value function of the Pareto 
type IV model is defined as follows: 

( ) 1 1 , 0

b
t

m t a t
c

    
      

     

 

     

  (1) 

  

Through maximum likelihood (ML) 

estimation, we determine the values of the 

parameters a, b, and c. To segment the 

time domain data into distinct, non-

overlapping sequential subgroups of size r, 

we exponentiate m(t) by raising it to the 

power of r. 

( ) 1 1

r
b

t
m t a

c

    
     

     

  

     

  (2) 

To obtain estimates for the 'n' units, we 

must initially establish the likelihood 

function. 

The model proposed in this study involves 

three constants, namely 'a,' 'b,' and 'c,' 

which are integral components of the 

mean value function. 

By taking the derivative of Eq. (2) 

concerning 't,' we acquire the following 

expression: 
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The Likelihood function L can be written 

as 
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By substituting Eq. (1) and Eq. (3) into Eq. 

(4), we obtain the following result: 
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respect to 'a' and set it equal to zero  (i.e., 
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Calculate the derivative of Log L with 

respect to 'b' and set it equal to zero. 
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Calculate the derivative of Log L with 

respect to 'b' and set it equal to zero. 

 (i.e., 0
LogL
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. we get 
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C. Estimated parameters and their 

control limits 

By utilizing inter-failure time data along 

with maximum likelihood estimation, the 

parameters were calculated. The process is 

deemed to be out of control under two 

conditions: when the time to observe a 

single failure is either below the Lower 

Control Limit (LCL) or above the Upper 

Control Limit (UCL), as specified by the 

control chart's limits. Our primary 

objectives involve monitoring the failure 

process and detecting changes in the 

intensity parameter. Such occurrences are 

considered false alarms when the process 

is operating normally. This scenario is 

denoted as a false alarm, and although 

other false alarm probability values are 

feasible, the conventional setting is at 

0.27%. It's crucial for the permissible false 

alarm probability to be determined based 

on the actual product or process. 



 

 

Volume 12    Issue 03, March    2023                        ISSN 2456 – 5083                 Page:  824 

Control limits can be calculated by  

0.99865

0.5

0.00135

u

c

l

T

T

T







 

Table 1 displays the estimated parameters 

and corresponding control limits for the 

Failure Count Chart (FCC), with a false 

alarm risk set at 0.0027, applied to both 

the Musa and SYS2 datasets. The control 

limits are calculated using these estimated 

parameters. These limits play a crucial role 

in assessing whether the software process 

is within control or not. The table provides 

the estimated values of 'a,' 'b,' and 'c,' 

along with their respective control limits, 

for both 4th-order and 5th-order statistics. 

Table 1. Estimates of the parameters and the control limits for orders 4 and 5 

Dataset Order 

Estimates Control Limits 

‘a’ ‘b’ ‘c’ “UCL” “CL” “LCL” 

Musa 4 3.407049 0.110178 1.217387 3.402449 1.703524 0.004599 

 5 2.724650 0.110720 1.197433 2.720971 0.003678 1.362325 

Sys2 4 3.187556 0.098599 1.217576 3.183252 0.004303 1.593778 

 5 2.626644 0.098197 1.197625 2.623098 1.313322 0.003545 

 

Distribution of Time between Failures 

Tables 2 to 5 present calculations of the 

mean differences in the rth order 

cumulative time between failures data for 

the designated datasets. These 

computations serve as the basis for 

generating Figures 1 to 4, where the x-axis 

represents the failure numbers, and the y-

axis displays the mean differences between 

successive data points. Additionally, 

control limits are superimposed on the 

Failure Control Chart. The appearance of a 

point beyond these control limits triggers 

an alarm. Points situated above the control 

limit indicate enhanced quality, whereas 

points residing within the control limits 

signify stability in the software process. 

Table 2: Consecutive variances of 4th order mean values of Musa 

Failure 

No 

Fourth 

order 

cumulatives 

m(t) Consecutiv

e variances 

Failure 

No 

Fourth 

order 

cumulatives 

m(t) Consecutive 

variances 

1 227 1.49300

2 0.135864 

18 16358 2.21161

2 0.014591 

2 444 1.62886

6 0.101794 

19 18287 2.22620

3 0.015187 

3 759 1.73066

0 0.059819 

20 20567 2.24139

0 0.020323 

4 1056 1.79048

0 0.108586 

21 24127 2.26171

3 0.020653 

5 1986 1.89906

5 0.048715 

22 28460 2.28236

6 0.015982 

6 2676 1.94778

0 0.078945 

23 32408 2.29834

8 0.018176 

7 4434 2.02672

5 0.020790 

24 37654 2.31652

4 0.013088 

8 5089 2.04751

5 0.008551 

25 42015 2.32961

2 0.000791 
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9 5389 2.05606

6 0.024890 

26 42296 2.33040

3 0.015621 

10 6380 2.08095

6 0.022399 

27 48296 2.34602

4 0.008697 

11 7447 2.10335

5 0.008850 

28 52042 2.35472

1 0.003075 

12 7922 2.11220

5 0.036342 

29 53443 2.35779

6 0.006380 

13 10258 2.14854

6 0.011815 

30 56485 2.36417

6 0.011836 

14 11175 2.16036

1 0.015933 

31 62651 2.37601

3 0.003986 

15 12559 2.17629

5 0.009618 

32 64893 2.37999

9 0.017807 

16 13486 2.18591

3 0.016661 

33 76057 2.39780

6 0.016934 

17 15277 2.20257

3 0.009038 

34 88683 2.41474

0  

 

 

Fig 1: FCC for Musa dataset of order 4 

 

 

 

Table 3: Consecutive variances of 5th order mean value of Musa dataset 

Failure 

No 

Fifth 

order 

cumulatives 

m(t) Consecutive 

variances 

Failure 

No 

Fifth 

order 

cumulatives 

m(t) Consecutive 

variances 

1 342 1.268389 0.080132 15 17758 1.783891 0.015172 

2 571 1.348521 0.077996 16 20567 1.799062 0.023366 

3 968 1.426517 0.099204 17 25910 1.822428 0.012404 

4 1986 1.525721 0.057567 18 29361 1.834832 0.024143 

5 3098 1.583288 0.060067 19 37642 1.858975 0.010470 

6 5049 1.643354 0.006329 20 42015 1.869445 0.007318 

7 5324 1.649684 0.021317 21 45406 1.876763 0.007908 

8 6380 1.671001 0.020873 22 49416 1.884671 0.007044 

9 7644 1.691875 0.031248 23 53321 1.891714 0.005299 

10 10089 1.723122 0.009360 24 56485 1.897013 0.009454 

11 10982 1.732482 0.014630 25 62661 1.906467 0.015365 

12 12559 1.747112 0.016946 26 74364 1.921833 0.011346 

UCL 3.40245 CL 1.70352 

LCL 0.00460 
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13 14708 1.764057 0.010123 27 84566 1.933179  

14 16185 1.774181 0.009710     

 

 

Fig 2: FCC for Musa dataset of order 5 

Table 4: Consecutive variances of 4th order mean values of Sys2 dataset 

Failure 

No 

Fourth 

order 

cumulatives 

m(t) Consecuti

ve variances 

Failure 

No 

Fourth 

order 

cumulatives 

m(t) Consecutiv

e variances 

1 1576 1.615099 0.143071 12 34467 
      

2.027437 
0.018999 

2 4149 1.758170 0.047063 13 40751 2.046436 0.018875 

3 5827 1.805233 0.072588 14 48262 2.065311 0.010775 

4 10071 1.877821 0.020687 15 53223 2.076085 0.005871 

5 11836 1.898507 0.032053 16 56160 2.081956 0.009971 

6 15280 1.930560 0.012136 17 61565 2.091928 0.013501 

7 16860 1.942696 0.018173 18 69815 2.105429 0.018076 

8 19572 1.960868 0.023563 19 82822 2.123504 0.010050 

9 23827 1.984431 0.020058 20 91190 2.133554 0.007140 

10 28257 2.004489 0.014010 21 97698 2.140694  

11 31886 2.018499 0.008937     

 

 

 Fig 3: FCC for Sys2 dataset of order 4 

Table 5: Consecutive variances of 5th order mean values of Sys2 dataset 

Failure 

No 

Fifth order 

cumulatives 

m(t) Consecutive 

variances 

Failure 

No 

Fifth order 
cumulatives 

m(t) Consecutive 

variances 

1 2610 1.391923 0.062641 10 39856 1.681852 0.013499 

UCL 2.72097 CL 1.36233 

LCL 0.00368 
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2 4436 1.454565 0.068118 11 46147 1.695352 0.012955 

3 8163 1.522683 0.039546 12 53223 1.708306 0.009239 

4 11836 1.562228 0.029024 13 58996 1.717546 0.011777 

5 15685 1.591252 0.013874 14 67374 1.729323 0.015123 

6 17995 1.605126 0.020963 15 80106 1.744446 0.011155 

7 22226 1.626089 0.023311 16 91190 1.755601 0.006736 

8 28257 1.649400 0.012883 17 98692 1.762337  

9 32346 1.662283 0.019569     

 

 

Fig. 4. FCC for Sys2 dataset of order 5 

CONCLUSION 

We've plotted the 4th and 5th order failure 

counts against the serial order of failures 

using the estimated mean value function. 

Parameters were estimated using the 

Maximum Likelihood Estimation (MLE) 

approach. The successive differences in 

the Sys2 dataset show moderate 

fluctuations within the control limits, 

whereas the successive differences in the 

Musa dataset have exceeded the control 

limits. As a result, we can confidently 

assert that our estimation method and the 

control chart provide strong support for 

their applicability in identifying optimal 

control processes or detecting noteworthy 

out-of-control signals. 
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