

COPY RIGHT

2023 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 21st Mar 2023. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-12&issue=Issue 03

10.48047/IJIEMR/V12/ISSUE 03/114

Title SPC AND ORDER STATISTICS: PARETO TYPE IV MODEL

Volume 12, ISSUE 03, Pages: 819-828

Paper Authors B.N.V.Uma Shankar, K.Rosaiah

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 12 Issue 03, Mar 2023 ISSN 2456 – 5083 www.ijiemr.org

http://www.ijiemr.org/downloads.php?vol=Volume-12&issue=Issue03
http://www.ijiemr.org/

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 819

SPC AND ORDER STATISTICS: PARETO TYPE IV MODEL

B.N.V.Uma Shankar , Research Scholar and Senior Grade Asst.Prof, Department of Basic

Sciences & Humanities, CVR College of Engineering, Hyderabad, India

K.Rosaiah, Department of Statistics, Acharya Nagarjuna University, India

ABSTRACT:

 Over the years, numerous software defect prediction models have been developed to

tackle the challenges inherent in software project development. Emphasizing software

reliability is crucial for enhancing overall software quality, as it involves the analysis and

projection of software quality based on defect prediction. Many software enterprises are

actively striving to enhance software quality while concurrently reducing software

development expenses. Among the diverse models available, the Pareto Type IV model

stands out as a pivotal approach for scrutinizing software flaws using generated data.

Complementing this, Statistical Process Control (SPC) emerges as a statistical technique

offering contextual quality assurance. In this research endeavor, an enhanced software defect

prediction model takes center stage, serving to anticipate errors that materialize during

distinct phases of software development. This innovative model seeks to leverage insights

from historical data, refined algorithms, and a comprehensive understanding of influencing

factors. Through such proactive measures, the goal is to optimize software quality, minimize

defects, and streamline the software development lifecycle.

KeyWords: Pareto type IV distribution model, NHPP, MLE method, Statistical Process

Control, Order Statistics.

INTRODUCTION:

 The concept of software reliability

emerged as a response to the growing

importance of software systems in various

industries and the realization that software

failures could lead to significant economic

losses, safety hazards, and disruptions. As

computers became more powerful and

software systems grew in complexity,

software began to be used in critical

applications such as aerospace, defense,

healthcare, and finance. Failures in these

systems could have catastrophic

consequences, highlighting the need for

increased focus on reliability. Researchers

began to develop mathematical models to

analyze and predict software reliability,

drawing inspiration from reliability

engineering principles used in hardware

systems. The concept of “software aging”

gained traction during this decade. It was

observed that software systems often

became less reliable over time due to

factors like resource leaks, memory

corruption, and performance degradation.

This led to the development of reliability

growth models that aimed to track and

improve software reliability over its life

cycle. SRM, also referred to as the

numerical model in this context, plays a

crucial role in enhancing error detection

subsequent to code modifications [1].

These models primarily concentrate on

determining the necessary testing efforts

designated for [2].

The growth of software-intensive systems,

including embedded systems, web

applications, mobile apps, and cloud

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 820

computing, further emphasized the

importance of software reliability. Agile

and DevOps methodologies introduced

new challenges and opportunities for

integrating reliability practices into the

software development life cycle. Today,

software reliability is an integral part of

software engineering and quality assurance

practices. Techniques like continuous

integration, automated testing, and

continuous monitoring help in identifying

and addressing reliability issues

throughout the development process. The

frequency of errors that occur while

debugging software is the basis for several

software reliability models. In reliability

engineering, the NHPP is particularly

useful for modeling the failure rates of

systems or components that change over

time due to various factors such as

environmental conditions, usage patterns,

and design changes. The key idea behind

NHPP is that the failure rate is not constant

but varies as a function of time.

In software projects, failures are a

common occurrence during both the

development and execution phases [3].

Determining software reliability can be a

challenging endeavor due to the inherent

complexity of software types. Identifying

an appropriate reliability model often

hinges on the selection of reliable models.

The notion of estimated software lacks a

definitive description [4]. In cases where

direct reliability measurement is not

feasible, assessing reliability attributes

provides an alternative avenue.

The NHPP model incorporates an

“intensity function” or “failure rate

function” that describes how the failure

rate changes over time. This function can

take various forms depending on the

specific characteristics of the system being

analyzed. The NHPP model offers the

capability to estimate the anticipated

quantity of failures occurring within a

specific timeframe or to forecast the

prospective failure rates of a system by

drawing insights from historical data.

Order statistics are useful in a wide range

of scenarios. Many books show how they

are used in characterization problems,

outlier identification, life-testing, data

compression, linear estimation, system

reliability studies, survival analysis, and

many other domains. This study proposes

a control mechanism derived from the

mean value function of a Pareto type IV

distribution, employing a Non-

Homogeneous Poisson Process (NHPP) as

its foundation. The control strategy is

devised using order statistics applied to the

cumulative quantity observed in time-

based domain failure data. The research

employs live datasets to validate the

Pareto type IV distribution model in

conjunction with the order statistics

technique. The paper concludes by

summarizing its findings and implications.

RELATED WORK

In a study by G. Sridevi et al., [5], they

introduced the utilization of the Burr Type

XII distribution model to assess software

quality through Statistical Process Control

(SPC). Meanwhile, B. Amulya and their

coauthors [6] applied Statistical Process

Control (SPC) for failure evaluation and

proposed the use of the Pareto Type II

distribution model along with an order

statistic approach. The assessment of

High-Level Design (HLD) was carried out

using NHPP-based time-domain data. This

approach combines both models to analyze

failure data and employs control charts to

visualize performance.

Furthermore, Y. Wu and their team [7]

recommended an advanced software

testing strategy that highlights the SRAT

(Software Reliability Assessment Tool) as

a more efficient method for generating

reliable testing outcomes. This strategy

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 821

also assesses the functionality and

programs specified within the software

code.

In their study, M. Nafreen et al., [8]

introduced a novel approach that combines

software defect tracking with the Software

Reliability Growth Model (SRGM). This

integrated methodology was applied

within a NASA project to identify and

analyze a multitude of software flaws and

their subsequent resolution. The suggested

paradigm initiates the NASA software

defect lifecycle's 13 distinct steps,

demonstrating improved performance.

K.K. San and coauthors [9] introduced a

novel SRGM method that employs

features from completed projects to predict

bugs in ongoing projects. Their approach

trains similar initiatives to enhance bug

identification and employs an RNN-based

DLSTM model for prediction.

C. Guo and et al., [10] presented a novel

software reliability growth model focused

on determining the severity levels of

prevalent problems. These levels are

analyzed to gauge fault severity and

visualized using a logistic curve. Y. Liu

and coauthors [11] developed a framework

for fault elimination to enhance the

accuracy of time delay approaches for

software dependability using half-grouped

datasets.

In their research, J. Yang and their team

[12] considered the incorporation of delays

in fault repair time using a time delay

model when analyzing the failure

processes across various software versions.

M. Cinque and their collaborators [13]

introduced the Debugging-Workflow-

Aware Software Reliability Growth

Approach (DWA-SRGM), which is

specifically designed to address bugs

within software projects. Meanwhile, H.

Okamura and colleagues [14] presented an

enhanced framework that establishes the

correlation between fault discovery times

and the durations required for remediation.

Finally, H. Sukhwani and coauthors [15]

unveiled an SRGM tailored for flight

management software utilized in space

missions, demonstrating superior

performance in real-time software

applications.

ORDER STATISTICS

Order statistics involve arranging a sample

of random variables in ascending order.

Put simply, when you organize

observations from a random variable from

smallest to largest, you obtain order

statistics. These statistics offer insights

into the distribution of the random variable

and find application in diverse statistical

analyses. Denoted as "X_{(1)}, X_{(2)},

..., X_{(n)}," order statistics are derived

from a sample of size n from a random

variable X (consisting of observations x1,

x2, ..., xn). Here, X_{(1)} is the smallest,

X_{(2)} is the second smallest, and

X_{(n)} is the largest observation.

Software failure processes are evaluated

using failure control principles grounded

in inter-failure data accumulation.

Following data transformation, failure data

is segmented into 4 and 5 cumulative

intervals. The time intervals between

successive failures illustrate the failure

time data. Typically, these failure time data

are sorted into non-overlapping subgroups

of size 4 or 5 and summed when waiting

time for failure isn't critical.

Consider grouping 200 inter-failure times

into 40 disjoint subgroups, each

comprising 5 observations. The sum of

each subgroup represents the interval

between every fifth failure, also known as

the fifth order statistics when dealing with

five observations in a sample.

In our research, we employed the Pareto

Type IV model for r = 4 and r = 5,

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 822

respectively. The parameters and

corresponding values, computed using an

iterative technique for cumulative time

between failures data, are denoted as the

maximum likelihood estimates 'a', 'b,' and

'c.' These estimates facilitate the

calculation of m(t).

ILLLUSTRATING THE MLE

A. Pareto IV distribution Model

The research suggests estimating

software reliability based on order

statistics and a Pareto type IV distribution

model. It is often used in various fields

such as economics, finance, and

engineering to model heavy-tailed

phenomena where extreme values occur

more frequently than in a normal

distribution. The mean value function and

intensity function for the Pareto type IV

NHPP model are defined as follows. The

formula for the Cumulative Distribution

Function is expressed as:

1

0
() () 1 1

b
t

m t t dt a
c

()a F t

B. Mathematical Derivation for

Parameter Estimation

We employ an order statistics technique to
derive expressions for estimating the
parameters of the Pareto type IV model
based on time-domain data. Parameter
estimation is a crucial step in anticipating
software reliability. Maximum Likelihood
Estimation (MLE) aims to determine the
parameter values that maximize the
likelihood or log-likelihood function. In
mathematical terms, this entails finding
the values that satisfy the condition

(log) / () 0likelihood parameters .

This optimization process is typically
carried out using algorithms like gradient
descent or Newton's method.

The primary objective of Maximum
Likelihood parameter estimation is to

select the parameters that maximize the
likelihood (probability) of the observed
sample data. In essence, MLE approaches
are versatile and can be applied to a wide
array of models and data sources.

The mean value function of the Pareto
type IV model is defined as follows:

() 1 1 , 0

b
t

m t a t
c

 (1)

Through maximum likelihood (ML)

estimation, we determine the values of the

parameters a, b, and c. To segment the

time domain data into distinct, non-

overlapping sequential subgroups of size r,

we exponentiate m(t) by raising it to the

power of r.

() 1 1

r
b

t
m t a

c

 (2)

To obtain estimates for the 'n' units, we

must initially establish the likelihood

function.

The model proposed in this study involves

three constants, namely 'a,' 'b,' and 'c,'

which are integral components of the

mean value function.

By taking the derivative of Eq. (2)

concerning 't,' we acquire the following

expression:

1

'

1

1
1

1 1

r

b b

ab
m t r a

t t
c

c c

 (3)

The Likelihood function L can be written

as

 () 1

1

n
m t

i

i

L e m t

 (4)

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 823

By substituting Eq. (1) and Eq. (3) into Eq.

(4), we obtain the following result:

1 1

1

(1) log
1

11 log

1

log log log (1) log 1

r

bn n
r

b
i i

n

i

a
r a

t
Log L a r

ct

c t
a b c b

c

Calculate the derivative of Log L with

respect to 'a' and set it equal to zero (i.e.,

0
LogL

a

)

 1

1

log 1 1 1
1 1 1

1 1

1

r

n
r

b b
i

b

L n
r a r a

aa a at ta
tc c

c

0
LogL

a

r
b

r

b b

t c
a n

t c c

 (5)

() 0
LogL

g b
b

1 1

1

1 log
1

11 log

1

log log log (1) log 1

r

bn n
r

b
i i

n

i

a
r a

t
LogL a r

ct

c t
a b c b

c

Calculate the derivative of Log L with

respect to 'b' and set it equal to zero.

1 1

1 1 1
() log log log 1

1 11 1 1 1

n n

ib b
i iii

nr r n
g b t

t t bt t

 (6)

1

2

2 2
1

1 (1) log(1)
() log

1 1 1

1 log 11
1 log

1 1 1

b

b

b
n

i i

b
i i

i

t t
g b nr

t t

t t n
r

t bt

 (7)

Calculate the derivative of Log L with

respect to 'b' and set it equal to zero.

 (i.e., 0
LogL

c

. we get

21 1

1 2
() 1

()
1

n n

i i ii

nr n t
g c r

tt c t c c
c

c

 (8)

2
1

2 2 22 3
1 1

41
() (1)

n n
i

i ii i

tnr n
g c r

ct c t c t c c

 (9)

C. Estimated parameters and their

control limits

By utilizing inter-failure time data along

with maximum likelihood estimation, the

parameters were calculated. The process is

deemed to be out of control under two

conditions: when the time to observe a

single failure is either below the Lower

Control Limit (LCL) or above the Upper

Control Limit (UCL), as specified by the

control chart's limits. Our primary

objectives involve monitoring the failure

process and detecting changes in the

intensity parameter. Such occurrences are

considered false alarms when the process

is operating normally. This scenario is

denoted as a false alarm, and although

other false alarm probability values are

feasible, the conventional setting is at

0.27%. It's crucial for the permissible false

alarm probability to be determined based

on the actual product or process.

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 824

Control limits can be calculated by

0.99865

0.5

0.00135

u

c

l

T

T

T

Table 1 displays the estimated parameters

and corresponding control limits for the

Failure Count Chart (FCC), with a false

alarm risk set at 0.0027, applied to both

the Musa and SYS2 datasets. The control

limits are calculated using these estimated

parameters. These limits play a crucial role

in assessing whether the software process

is within control or not. The table provides

the estimated values of 'a,' 'b,' and 'c,'

along with their respective control limits,

for both 4th-order and 5th-order statistics.

Table 1. Estimates of the parameters and the control limits for orders 4 and 5

Dataset Order

Estimates Control Limits

‘a’ ‘b’ ‘c’ “UCL” “CL” “LCL”

Musa 4 3.407049 0.110178 1.217387 3.402449 1.703524 0.004599

 5 2.724650 0.110720 1.197433 2.720971 0.003678 1.362325

Sys2 4 3.187556 0.098599 1.217576 3.183252 0.004303 1.593778

 5 2.626644 0.098197 1.197625 2.623098 1.313322 0.003545

Distribution of Time between Failures

Tables 2 to 5 present calculations of the

mean differences in the rth order

cumulative time between failures data for

the designated datasets. These

computations serve as the basis for

generating Figures 1 to 4, where the x-axis

represents the failure numbers, and the y-

axis displays the mean differences between

successive data points. Additionally,

control limits are superimposed on the

Failure Control Chart. The appearance of a

point beyond these control limits triggers

an alarm. Points situated above the control

limit indicate enhanced quality, whereas

points residing within the control limits

signify stability in the software process.

Table 2: Consecutive variances of 4th order mean values of Musa

Failure

No

Fourth

order

cumulatives

m(t) Consecutiv

e variances

Failure

No

Fourth

order

cumulatives

m(t) Consecutive

variances

1 227 1.49300

2 0.135864

18 16358 2.21161

2 0.014591

2 444 1.62886

6 0.101794

19 18287 2.22620

3 0.015187

3 759 1.73066

0 0.059819

20 20567 2.24139

0 0.020323

4 1056 1.79048

0 0.108586

21 24127 2.26171

3 0.020653

5 1986 1.89906

5 0.048715

22 28460 2.28236

6 0.015982

6 2676 1.94778

0 0.078945

23 32408 2.29834

8 0.018176

7 4434 2.02672

5 0.020790

24 37654 2.31652

4 0.013088

8 5089 2.04751

5 0.008551

25 42015 2.32961

2 0.000791

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 825

9 5389 2.05606

6 0.024890

26 42296 2.33040

3 0.015621

10 6380 2.08095

6 0.022399

27 48296 2.34602

4 0.008697

11 7447 2.10335

5 0.008850

28 52042 2.35472

1 0.003075

12 7922 2.11220

5 0.036342

29 53443 2.35779

6 0.006380

13 10258 2.14854

6 0.011815

30 56485 2.36417

6 0.011836

14 11175 2.16036

1 0.015933

31 62651 2.37601

3 0.003986

15 12559 2.17629

5 0.009618

32 64893 2.37999

9 0.017807

16 13486 2.18591

3 0.016661

33 76057 2.39780

6 0.016934

17 15277 2.20257

3 0.009038

34 88683 2.41474

0

Fig 1: FCC for Musa dataset of order 4

Table 3: Consecutive variances of 5th order mean value of Musa dataset

Failure

No

Fifth

order

cumulatives

m(t) Consecutive

variances

Failure

No

Fifth

order

cumulatives

m(t) Consecutive

variances

1 342 1.268389 0.080132 15 17758 1.783891 0.015172

2 571 1.348521 0.077996 16 20567 1.799062 0.023366

3 968 1.426517 0.099204 17 25910 1.822428 0.012404

4 1986 1.525721 0.057567 18 29361 1.834832 0.024143

5 3098 1.583288 0.060067 19 37642 1.858975 0.010470

6 5049 1.643354 0.006329 20 42015 1.869445 0.007318

7 5324 1.649684 0.021317 21 45406 1.876763 0.007908

8 6380 1.671001 0.020873 22 49416 1.884671 0.007044

9 7644 1.691875 0.031248 23 53321 1.891714 0.005299

10 10089 1.723122 0.009360 24 56485 1.897013 0.009454

11 10982 1.732482 0.014630 25 62661 1.906467 0.015365

12 12559 1.747112 0.016946 26 74364 1.921833 0.011346

UCL 3.40245 CL 1.70352

LCL 0.00460

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

M
ea

n
 v

al
u

e
S

u
cc

es
si

v
e

d
if

fe
re

n
ce

s

Failure Number

Mean value Chart

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 826

13 14708 1.764057 0.010123 27 84566 1.933179

14 16185 1.774181 0.009710

Fig 2: FCC for Musa dataset of order 5

Table 4: Consecutive variances of 4th order mean values of Sys2 dataset

Failure

No

Fourth

order

cumulatives

m(t) Consecuti

ve variances

Failure

No

Fourth

order

cumulatives

m(t) Consecutiv

e variances

1 1576 1.615099 0.143071 12 34467

2.027437
0.018999

2 4149 1.758170 0.047063 13 40751 2.046436 0.018875

3 5827 1.805233 0.072588 14 48262 2.065311 0.010775

4 10071 1.877821 0.020687 15 53223 2.076085 0.005871

5 11836 1.898507 0.032053 16 56160 2.081956 0.009971

6 15280 1.930560 0.012136 17 61565 2.091928 0.013501

7 16860 1.942696 0.018173 18 69815 2.105429 0.018076

8 19572 1.960868 0.023563 19 82822 2.123504 0.010050

9 23827 1.984431 0.020058 20 91190 2.133554 0.007140

10 28257 2.004489 0.014010 21 97698 2.140694

11 31886 2.018499 0.008937

 Fig 3: FCC for Sys2 dataset of order 4

Table 5: Consecutive variances of 5th order mean values of Sys2 dataset

Failure

No

Fifth order

cumulatives

m(t) Consecutive

variances

Failure

No

Fifth order
cumulatives

m(t) Consecutive

variances

1 2610 1.391923 0.062641 10 39856 1.681852 0.013499

UCL 2.72097 CL 1.36233

LCL 0.00368

0.0000

0.0010

0.1000

10.0000

1 3 5 7 9 11 13 15 17 19 21 23 25M
ea

n
 v

al
u

e
S

u
cc

es
si

v
e

d
if

fe
re

n
ce

s

Failure Number

Mean value Chart

UCL 3.18325 CL 1.59378

LCL 0.00430

0.0000
0.0001
0.0010
0.0100
0.1000
1.0000

10.0000
100.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
 v

al
u

e
S

u
cc

es
si

v
e

d
if

fe
re

n
ce

s

Failure Number

Mean value Chart

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 827

2 4436 1.454565 0.068118 11 46147 1.695352 0.012955

3 8163 1.522683 0.039546 12 53223 1.708306 0.009239

4 11836 1.562228 0.029024 13 58996 1.717546 0.011777

5 15685 1.591252 0.013874 14 67374 1.729323 0.015123

6 17995 1.605126 0.020963 15 80106 1.744446 0.011155

7 22226 1.626089 0.023311 16 91190 1.755601 0.006736

8 28257 1.649400 0.012883 17 98692 1.762337

9 32346 1.662283 0.019569

Fig. 4. FCC for Sys2 dataset of order 5

CONCLUSION

We've plotted the 4th and 5th order failure

counts against the serial order of failures

using the estimated mean value function.

Parameters were estimated using the

Maximum Likelihood Estimation (MLE)

approach. The successive differences in

the Sys2 dataset show moderate

fluctuations within the control limits,

whereas the successive differences in the

Musa dataset have exceeded the control

limits. As a result, we can confidently

assert that our estimation method and the

control chart provide strong support for

their applicability in identifying optimal

control processes or detecting noteworthy

out-of-control signals.

REFERENCES

1. Ullah, Najeeb & Morisio, Maurizio &

Vetro, Antonio. (2013). A Comparative

Analysis of Software Reliability

Growth Models using Defects Data of

Closed and Open Source Software.

Proceedings of the 2012 IEEE 35th

Software Engineering Workshop, SEW

2012. 187-192. 10.1109/SEW.2012.26.

2. Kapil Sharma, et al, "Selection of

Optimal Software Reliability Growth

Models Using a Distance Based

Approach", IEEE Transactions On

Reliability, VOL. 59, NO. 2, JUNE

2010.

3. Bruno Rossi et al, "Modelling Failures

Occurrences of Open Source Software

with Reliability Growth", journal of

Open Source Software: New Horizons,

page 268-280, 2010.

4. Cobra Rahmani et al, "A Comparative

Analysis of Open Source Software

Reliability", Journal of Software, page

1384-1394, 2010.

5. Gutta Sridevi, R.Satya Prasad and

K.V.Murali Mohan, “Monitoring Burr

Type XII Software Quality Using

SPC”,International Journal of Applied

Engineering Research (IJAER), Vol. 9,

UCL 2.62310 CL 1.31332

LCL 0.00355

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ea

n
 v

al
u

e
S

u
cc

es
si

v
e

d
if

fe
re

n
ce

s

Failure Number

Mean value Chart

Volume 12 Issue 03, March 2023 ISSN 2456 – 5083 Page: 828

No. 22 (2014), pp:16651- 16660,

ISSN:0973-4462.

6. K. S. Kumari, B. Amulya and R. S.

Prasad, "Comparative study of Pareto

Type II with HLD in assessing the

software reliability with order statistics

approach using SPC," 2014

International Conference on Circuits,

Power and Computing Technologies

[ICCPCT-2014], 2014, pp. 1630-

1636, doi:

10.1109/ICCPCT.2014.7054824.

7. Y. Wu, Y. Zhang and M. Lu, "Software

reliability accelerated testing method

based on mixed testing," 2010

Proceedings - Annual Reliability and

Maintainability Symposium (RAMS),

2010, pp. 1-6, doi:

10.1109/RAMS.2010.5448017.

8. M. Nafreen, M. Luperon, L. Fiondella,

V. Nagaraju, Y. Shi and T. Wand ji,

"Connecting Software Reliability

Growth Models to Software Defect

Tracking," 2020 IEEE 31st

International Symposium on Software

Reliability Engineering (ISSRE), 2020,

pp. 138-147, doi:

10.1109/ISSRE5003.2020.00022.

9. K. K. San, H. Washizaki, Y. Fukazawa,

K. Honda, M. Taga and A. Matsuzaki,

"DC-SRGM: Deep Cross-Project

Software Reliability Growth Model,"

2019 IEEE International Symposium

on Software Reliability Engineering

Workshops (ISSREW), 2019, pp. 61-

66, doi: 10.1109/ISSREW.2019.00044.

10. C. Guo, S. Zhou, J. Li, F. Chen, D. Li

and X. Huang, "A Novel Software

Reliability Growth Model of Safety-

critical Software Considering Fault

Severity Classification," 2019 4th

International Conference on System

Reliability and Safety (ICSRS), 2019,

pp. 25-29, doi:

10.1109/ICSRS48664.2019.8987594

11. Y Liu, M. Xie, J. Yang and M. Zhao,

"A new framework and application of

software reliability estimation based on

fault detection and correction

processes", Proc. IEEE International

Conference on Software Quality

Reliability and Security, pp. 65-74,

2015.

12. J. Yang, Y Liu, M. Xie and M. Zhao,

"Modeling and analysis of reliability of

multi-release open source software

incorporating both fault detection and

correction processes", Journal of

Systems and Software, vol. 115, pp.

102-110, 2016.

13. M. Cinque, D. Cotroneo, A. Pecchia,

R. Pietrantuono and S. Russo,

"Debugging-workflowaware software

reliability growth analysis", Software

Testing Verification and Reliability,

vol. 27, no. 7, pp. e1638, 2017.

14. H. Okamura and T. Dohi, "A

generalized bivariate modeling

framework of fault detection and

correction processes", Proc. IEEE

International Symposium on Software

Reliability Engineering, pp. 35-45,

2017.

15. H. Sukhwani, J. Alonso, K. Trivedi and

I. Mcginnis, "Software reliability

analysis of NASA space flight

software: A practical experience",

Proc. IEEE International Conference

on Software Quality Reliability and

Security, pp. 386-397, 2016.

