
www.ijiemr.org Volume number:01, Issue number:02 Page 8

An Algorithm to Implement Combinational Logic Cells with

Reduced Number of Switches

*B.Swathi **Mr.B.Balaji ***Mr.M.Devadas

*M.Tech Dept of E.C.E, Vaagdevi College of Engineering

**Assistant. Prof Dept of E.C.E, Vaagdevi College of Engineering

***Assistant. Prof Dept of E.C.E, Vaagdevi College of Engineering

Abstract — This paper presents a new methodology to generate efficient transistor networks.

Transistor-level optimization consists in an effective possibility to increase design quality when

generating CMOS logic gates to be inserted in standard cell libraries. Starting from an input

ISOP, the proposed method is able to deliver series-parallel and non-series-parallel arrangements

with reduced transistor count. The experiments performed over the set of 4-input P-class

Booleans functions have demonstrated the efficiency of the proposed approach.

Keywords— Logic synthesis, transistor networks, EDA, CMOS.

I. INTRODUCTION

In current VLSI design, the total number of

transistors necessary to implement a logic

gate is strongly related to the signal delay

propagation, power consumption and area of

integrated circuits (ICs) [1-4]. Transistor

netlists are of special interest when

designing standard cell libraries [5] or

custom gates for improving a design [6]. To

increase design quality in full-custom

methodology, a handcraft generation of

transistor netlists for each functional block

may be performed. However, this is an

extremely time-consuming task for larger

ICs, making the adoption of such strategy

prohibitive. Thus, it becomes crucial to have

available efficient algorithms to

automatically generate optimized transistor

arrangements.

In the last decades, several methods to

generate and optimize transistor networks

have been proposed. The most traditional

solutions are based on algebraic and

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 9

Boolean factorization [7-9]. In a Boolean

expression, every instance of a variable is

called literal, and a product of literals is

formally called cube. The factorization

process manipulates a Boolean expression in

order to reduce the number of literals

necessary to represent a Boolean function.

Afterwards, the factored expression is

directly translated to a transistor (switch)

network. In this case, only series and

parallel (SP) arrangements are obtained,

related respectively to AND and OR

operations present in Boolean expression.

Alternative methods to generate transistor

networks are based on graph optimizations,

where a Boolean expression is translated to

a graph. This graph can be optimized by

edges sharing [10-12] or can be gradually

composed from an input expression [13]. In

some cases, these techniques are able to

deliver better results than factorization based

methods if non-series-parallel (NSP)

arrangements are able to be found during the

graph manipulation process. Such

optimization obtained exploiting NSP

topologies is due to the large sharing

between the paths that represent cubes of a

function, so reducing the total switch count

and overcoming SP arrangements

[10,12,13].

This paper proposes a new graph-based

method able to generate optimized transistor

networks. Our approach presents a structural

algorithm based on SP arrangements to

avoid unnecessary computation during the

generation of transistor networks. Different

from the approach presented in [12], this

new method delivers the networks not only

applying transistor sharing, but also

considering topological information during

the generation process. Moreover, this paper

presents a methodology based on SP kernels

different from previous method described in

[14], in which the NSP Kernel concept was

introduced.

The remaining of this paper is organized as

follows. Section II introduces the synthesis

methodology to generate optimized switches

networks. In Section III some experimental

results and comparisons are presented.

Finally, conclusions are outlined in Section

IV.

II. SYNTHESIS METHODOLOGY

The proposed method starts from an

irredundant sum-of-products (ISOP), and

tries to combine cubes to build SP kernels.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 10

A SP kernel structure is illustrated in Fig.

1(a). The synthesis methodology is divided

in two steps. The first step aims to build the

SP kernels. The second one tries to merge

the kernels found in order to deliver an

optimized switch network. Thus, these steps

are run in the following sequence:

(A) SP Kernel Finder.

(B) Kernel Composition.

Depending on the Boolean function

(expressed through an ISOP), the routines

(A) cannot find any kernel. Therefore, the

switch network is generated during the step

(B), applying edges sharing technique

presented in [12].

A. SP Kernel Finder

The SP Kernel Finder algorithm proposed

herein can be described as follows. For

n=|cubes(f)|, four cubes are selected by

combinations . Afterwards, the algorithm

builds a graph for each combination, as

explained bellow. 4 n C

We define an undirected graph G = (V,E) of

a function H which is given by a SOP with

exactly four cubes. The vertices in V =

{v1,v2,v3,v4} represent different cubes in H,

and |V| is the number of vertices in the set V.

An edge e = (vi,vj) in E exists if and only if

at least one literal appears in both vi and vj.

The operation (vi ∩ vj) represents common

literals in both vi and vj vertices. Thus, an

edge e formally exists if and only if:

We define the label of e by using label(e) =

(lit(vi) ∩ lit(vj)), where lit(vi) represents the

set of literals present in vi. To ensure that the

obtained graph is a valid SP kernel two rules

must be checked:

Rule 1 – Let Evi be the set of edges that are

connected to vi. Each cube shares all its

literals if the following equation is satisfied

for all v V:

Rule 2 – The obtained graph must be an

isomorphic sub-graph to the graph template

illustrated in Fig. 1(a). In this work this

structure is called SP kernel.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 11

After building SP kernels, the algorithm

must apply some transformations over the

graph to map each found kernel to a switch

network. Therefore, the first step consists in

merging the rounded vertices of the template

shown in Fig. 1(a) in a single vertex, as

shown in Fig. 1(b). Afterwards, the edges

reordering routine is applied over the graph

illustrated in Fig. 1(b), resulting in the

switch network illustrated in Fig. 1(c). This

kernel structure, illustrated in Fig. 1(a), was

chosen because it leads to arrangements with

a large sharing between the paths that

compose the network, as shown in Fig. 1(b).

It is interesting because the cubes from the

input ISOP can be implemented with a

reduced number of switches. This way, if

this kind of arrangement may be built, our

method finds it in the first step of the

optimization process, avoiding unnecessary

computation.

To a better understanding of such process,

consider the following equation as input of

the algorithm:

Due to the characteristics of this function,

there is only one possible combination to

select the cubes and to try to build a kernel.

Thus, the algorithm found the kernel

illustrated in Fig. 2(a). It can be mapped

directly to the switch network illustrated in

Fig. 2(b), through the vertices merging and

the edges reordering routines.

Notice that the vertices merging and the

edges reordering routines are necessary to

implement the sharing between the paths of

the network that represent the cubes from

Equation (3).

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 12

As demonstrated above, through this kind of

SP arrangements, a set of four cubes can be

implemented with a reduction of 50% in the

number of literals (switches) when

compared to Equation (3). This optimization

rate tends to increase when multiple kernels

are found and merged by the edges sharing

technique applied in the step (B).

B. Kernel Composition

It is important to notice that, depending on

the input ISOP, multiple kernels can be

found. Moreover, some cubes from the input

ISOP cannot compose any kernel. Thus, five

possible cases can occur when generating

the transistor networks: (i) a network can be

composed by just one SP kernel; (ii) a

network can be composed by a SP kernel,

and one or more cubes that are implemented

as parallel transistor associations to this

kernel; (iii) a network can be composed by

multiple SP kernels in a parallel association;

(iv) a network can be composed by multiple

SP kernels, and one or more cubes that are

implemented as parallel transistor

associations; (v) there is no SP kernels and

the network is implemented through the

edges sharing algorithm. For each of these

five cases, such topological composition is

done gradually until achieving a network

that is logically equivalent to the input

Boolean function. During the composition

process, the edges sharing procedure is

applied to the network in order to eliminate

redundant switches [12]. Such strategy

allows a reduction in the total number of

switches.

As an example of network generation

composed by a SP kernel and a remaining

cube associated in parallel, let us consider

the following equation:

For such ISOP, the SP Kernel Finder routine

founds the SP kernel illustrated in Fig. 3(a).

This kernel may be mapped to the transistor

network illustrated in Fig. 3(b). Besides that,

the cube !a.!b.!c.!d was not implemented

through the found kernel. Hence, this cube

must be associated in parallel with such

kernel as shown in Fig. 4(a).

In the next, the SP kernel and the remaining

cube are gradually merged, by applying the

edges sharing procedure, resulting in the

sharing of the switch !a depicted by the Fig.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 13

4(b). Afterwards, the redundant switch !c is

shared, resulting in the optimized switch

network presented in Fig. 5.

Notice that, the proposed method starts from

SP arrangements and can achieve NSP

arrangements, as illustrated in Fig. 5,

through the composition procedure and the

edges sharing technique. This final network

is composed by 10 switches, saving 2

switches when compared to the exact

factorization that needs 12 switches to

implement the function described by

Equation (4).

Figure 4. Network derived from the SP

kernel and the remaining cube associated in

parallel (a), and the intermediate network (b)

after sharing the switch !a.

Figure 5. Final network delivered by the

proposed approach for Equation (4).

To demonstrate the network generation with

multiple SP kernels, let us consider the

equation of the 4-input XOR function:

The proposed method is able to find two SP

kernels. These kernels are illustrated in Fig.

6(a) and in Fig. 7(a). Each kernel may be

mapped to a correspondent switch network,

as illustrated in Fig. 6(b) and in Fig. 7(b),

respectively.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 14

Afterwards, during the kernel composition

procedure, these kernels are associated in

parallel resulting in the network illustrated

by the Fig. 8. Notice that there are some

redundant switches between these kernels.

Hence, in order to remove the redundancies

of the network, the edges sharing routine is

applied resulting in a network with a large

sharing of the switches, as shown in Fig. 9.

The obtained solution represents the

minimal switch network to implement the 4-

input XOR function.

III. EXPERIMENTAL RESULTS

In order to provide a comparison of our

methodology to other available solutions

described in the literature, the experiments

were performed over the set of 4-input P-

class logic functions. This set, composed by

3982 functions, was chosen because it

contains simple functions that are more

likely to be used as logic gates in real

designs. We have generated gates for each

function of this set, and compared them to

other methods available in the literature.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 15

Table I shows the obtained results when

considering the total switch count to

compute the logic gates. These results also

summarize the inverters needed to

implement the gates. Inverters are needed to

generate the complementary signal for input

variables that appears in both polarities. As

presented in Table I, our method compares

favorably with past approaches.

Fig. 10 shows the distribution of gains and

losses of our approach when comparing to

other solutions. This distribution for the set

of 4-input P-class logic functions is not

available in [13]. Thus, it was not possible to

perform the comparison with such

technique. As can be seen, the proposed

method is able to reduce up to 10 transistors

in some generated networks from the set of

3982 logic functions. In general, the gains

remain around 1 to 4 switches per network.

Moreover, it is important to notice that for a

small number of logic functions that

compose this set, our method delivers

networks with an increasing in the switch

count. In these cases, the main reason for

that is the bad choice when merging edges

during the multiple kernels merging process.

An efficient heuristic to choose the edges

that should be firstly merged would help to

improve the results.

The total execution time to generate all the

3982 networks was less than one second

when running in an Intel Core i5 at 2.8GHz

with 4 GB of RAM. It demonstrates the

feasibility of the proposed method to

increase design quality when generating

digital CMOS circuits.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 16

IV. CONCLUSIONS

This paper proposed a new graph-based

method to generate optimized transistor

(switch) networks. The proposed method

results in a reduction of transistor count

when compared to previous approaches. It is

known that reducing transistor count in a

logic gate it is possible to achieve better

results in terms of signal delay propagation

and power consumption. These associated

gains were not explicitly investigated in this

work, and they are being left as future work

at gate, library and circuit design level.

REFERENCES

[1] Y. Lai; Y. Jiang; H. Chu, “BDD

Decomposition for Mixed CMOS/PTL

Logic Circuit Synthesis”, In: IEEE Int.

Symp. on Circuits and Systems (ISCAS

2005), p. 5649-5652.

[2] H. Al-Hertani, D. Al-Khalili and C.

Rozon, “Accurate total static leakage current

estimation in transistor stacks”, In Proc. Int.

Conf. on Computer Systems and

Applications, 2006, pp. 262-65.

[3] T. J. Thorp, G. S Yee, C. M Sechen,

“Design and synthesis of dynamic circuits”.

IEEE Trans. on VLSI Systems, v. 11, n. 1, p.

141-149, Feb. 2003.

[4] L. S. Da Rosa Junior, F. S. Marques, T.

M. G. Cardoso, R. P. Ribas, S. Sapatnekar,

A. I. Reis, "Fast Disjoint Transistor

Networks from BDDs", In: 19th Symp. on

Integrated Circuits and Systems Design

(SBCCI 2006), p. 137-142.

[5] A. I. Reis, O. C. Anderson. Library

Sizing. US Patent number: 8015517, Filing

date: Jun 5, 2009, Issue date: Sep 6, 2011,

Application number: 12/479,603.

[6] R. Roy, D. Bhattacharya, V. Boppana,

"Transistor-level optimization of digital

designs with flex cells," IEEE Trans. on

Computers , vol.38, no.2, pp. 53- 61, Feb.

2005.

[7] M. C. Golumbic, A. Mintz, U. Rotics,

“An improvement on the complexity of

factoring read-once Boolean functions”,

Discrete Appl. Math, 2008, Vol. 156, n. 10,

p. 1633-1636.

[8] E. Sentovich et al, “SIS: A system for

sequential circuit synthesis”, Technical

Report No. UCB/ERL M92/41, EECS

Department, University of California,

Berkeley, 1992.

[9] M. G. A. Martins, L. S. Da Rosa Junior,

A. Rasmussen, R. P. Ribas, A. I. Reis,

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 17

“Boolean Factoring with Multi-Objective

Goals”. In: IEEE Int. Conf. on Computer

Design (ICCD 2010), p. 229-234.

[10] J. Zhu, M. Abd-El-Barr, “On the

optimization of MOS circuits”. IEEE Trans.

on Circuits and Systems: Fundamental

Theory and Applications, Theory Appl., vol.

40, no. 6, pp. 412–422, 1993.

[11] L. S. Da Rosa Junior, F. S. Marques, F.

Schneider, R. P. Ribas, A. I. Reis, “A

Comparative Study of CMOS Gates with

Minimum Transistor Stacks”. In: 20th

Symp. on Integrated Circuits and Systems

Design (SBCCI 2007), p. 93-98.

[12] V. N. Possani, R. S. Souza, J. S.

Domingues Junior, L. V. Agostini, F. S.

Marques, L. S. Da Rosa Junior, “Optimizing

Transistor Networks Using a Graph-Based

Technique”. Journal of Analog Integrated

Circuits and Signal Processing (ALOG),

May 2012.

[13] D. Kagaris, T. Haniotakis, “A

Methodology for Transistor-Efficient

Supergate Design”, IEEE Trans. on Very

Large Scale Integration (VLSI) Systems, p.

488-492, 2007.

[14] V. N. Possani, V. Callegaro, A. I. Reis,

R. P. Ribas, F. Marques, L. S. Da Rosa

Junior, “NSP Kernel Finder - A

Methodology to Find and to Build Non-

Series-Parallel Transistor Arrangements”.

In: 25th Symp. on Integrated Circuits and

Systems Design (SBCCI 2012), p. 1-6.

AUTHOR 1:-

B.Swathi completed her B-tech in

Supraja Institute of Technology & Sciences.

in 2014 and completed M-Tech in Vaagdevi

college of Engineering.

AUTHOR 2:-

B.Balaji is working as Assistant.

professor in Dept of ECE, Vaagdevi College

of Engineering.

AUTHOR 3:-

Mr.M.Devadas is working as

Assistant.professor in Dept of ECE,

Vaagdevi College of Engineering.

http://www.ijiemr.org/

