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ABSTRACT 

Robotics and AI have gained popularity across industries in recent years. Sensor-equipped robots are 

essential for environmental monitoring, industrial automation, and autonomous navigation. Precision 

and context-aware robotic actions require surface identification. Early robotic systems used rudimentary 

sensor data for navigation, frequently with poor environmental awareness. Developing algorithms that 

can robustly and accurately distinguish environmental surfaces for robot-sensed data is difficult. Floors, 

walls, obstructions, and other surfaces must be identified and classified. Traditional approaches struggle 

in complicated and dynamic situations where illumination, object orientations, and material fluctuations 

can impair surface recognition accuracy. Rule-based or basic heuristics are used in traditional robot-

sensed surface identification systems. These algorithms identify surfaces using sensor readings and 

thresholding or predetermined rules. Due to real-world complexity and variety, these approaches are 

limited. They may have trouble adapting and generalizing across situations. Demand for more advanced 

robotic applications increases the requirement for surface identification capabilities. AI methods, 

especially deep learning and neural networks, can increase robot-sensed surface identification accuracy 

and robustness. Surface identification with artificial intelligence includes training models like 

convolutional neural networks (CNNs) using labeled datasets of diverse surfaces. These models can 

learn to automatically extract essential properties from sensor data, helping the robot classify surfaces 

more accurately. AI in surface identification improves robot adaptability, enabling better navigation 

and interaction. 

Keywords: Robotics, Artificial intelligence (AI), Sensor-equipped robots, Environmental monitoring, 

Surface identification, Deep learning, Autonomous navigation, Industrial automation. 

1. INTRODUCTION 

Robotics and Artificial Intelligence (AI) have experienced significant growth and adoption across 

various industries in recent years. Sensor-equipped robots play a crucial role in tasks such as 

environmental monitoring, industrial automation, and autonomous navigation. A key requirement for 

these robots to perform precise and context-aware actions is the ability to accurately identify surfaces 

in their environment. This capability allows robots to navigate effectively and interact with their 

surroundings in a meaningful way. Early robotic systems relied on rudimentary sensor data for 

navigation, often with limited environmental awareness. These systems struggled to accurately 

distinguish between different environmental surfaces, such as floors, walls, and obstructions. 

Traditional approaches to surface identification typically involved rule-based or heuristic methods, 

which used sensor readings and predetermined rules to classify surfaces. However, these methods were 

limited in their ability to adapt to complex and dynamic environments, where factors such as 

illumination, object orientations, and material fluctuations could affect surface recognition accuracy.  
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In India, the adoption of robotics and AI technologies is steadily increasing across various sectors, 

including manufacturing, healthcare, agriculture, and logistics. According to a report by the 

International Data Corporation (IDC), spending on robotics and related services in India is expected to 

reach $50.9 billion by 2023. This growth is driven by factors such as increasing automation in industries, 

the rise of smart cities, and the government's initiatives to promote technology adoption. Moreover, the 

Indian government's "Make in India" initiative, which aims to boost domestic manufacturing and 

promote innovation, is expected to further drive the adoption of robotics and AI technologies in the 

country. In sectors such as manufacturing and agriculture, robotics and AI are increasingly being used 

to improve efficiency, productivity, and safety. However, despite the growing adoption of robotics and 

AI in India, there are still challenges to be addressed, including the need for skilled workforce, 

infrastructure development, and regulatory frameworks. Additionally, there is a growing focus on 

leveraging robotics and AI technologies to address social and environmental challenges, such as 

healthcare delivery, disaster response, and environmental monitoring. 

Given the increasing demand for advanced robotic applications in India and globally, there is a need for 

more robust and accurate surface identification capabilities. AI methods, particularly deep learning and 

neural networks, offer promising solutions to enhance surface identification accuracy and robustness in 

robotic systems. By training models such as convolutional neural networks (CNNs) using labeled 

datasets of diverse surfaces, robots can learn to automatically extract essential properties from sensor 

data, enabling more accurate surface classification and improving adaptability in various environments. 

This research aims to contribute to the advancement of robotic perception by leveraging AI-driven 

surface identification techniques. By improving the ability of robots to accurately identify and classify 

surfaces in their environment, this research can enable more precise and context-aware robotic actions, 

leading to improved performance and efficiency in various applications. 

2. LITERATURE SURVEY 

Robots can sense, plan, and act. They are equipped with sensors that go beyond human capabilities! 

From exploring the surface of Mars to lightning-fast global deliveries, robots can do things humans can 

only dream of. When designing and building robots, engineers often use fascinating animal and human 

models to help decide which sensors they need. For instance, bats can be used as a model for sound-

detecting robots, ants can be used as a model to determine smell, and bees can be used as a model to 

determine how they use pheromones to call for help. 

Human touch helps us to sense various features of our environment, such as texture, temperature, and 

pressure. Similarly, tactile sensors in robots can detect these qualities and more. For instance, the robot 

vacuum cleaner (Roomba) uses sensors to detect objects through contact [7]. However, similar to sight 

and sound, a robot may not always know the precise content of what it picks up (a bag, a soft cake, or 

a hug from a friend); it just knows that there is an obstacle to be avoided or found. 

Tactile sensing is a crucial element of intelligent robotic manipulation as it allows robots to interact 

with physical objects in ways that other sensors cannot [8]. This article provides a comprehensive 

overview of tactile sensing in intelligent robotic manipulation, including its history, common issues, 

applications, advantages, and disadvantages. It also includes a review of sensor hardware and delves 

into the major topics related to understanding and manipulation. 

Robots are increasingly being used in various applications, including industrial, military, and 

healthcare. One of the most important features of robots is their ability to detect and respond to 

environmental changes. Odor-sensing technology is a key component of this capability. In a survey 



Page 673 Vol 13 Issue 05,May 2024 ISSN 2456 – 5083 

 
 
 
 
 

 
 

presented by [9], the current status of chemical sensing as a sensory modality for mobile robots was 

reviewed. The article evaluates various techniques that are available for detecting chemicals and how 

they can be used to control the motion of a robot. Additionally, it discusses the importance of controlling 

and measuring airflow close to the sensor to infer useful information from readings of chemical 

concentration. 

Robot vision is an emerging technology that uses cameras and sensors to allow robots to interpret and 

respond to their environment, with numerous applications in the medical, industrial, and entertainment 

fields. It requires artificial intelligence (AI) techniques to produce devices that can interact with the 

physical world, and the accuracy of these devices depends on the vision techniques used. A survey by 

[10] presents a summary of data processing and domain-based data processing, evaluating various robot 

vision techniques, tools, and methodologies. 

Robot sensors and ears detect EM waves. The sound waves heard by human ears can also be detected 

by some robot sensors, such as microphones. Other robot sensors can detect waves beyond our 

capabilities, such as ultrasound. Cloud-based speech recognition systems use AI to interpret a user’s 

voice and convert it into text or commands, enable robots to interact with humans in a more natural 

way, automate certain tasks, and are hosted on the cloud for increased reliability and cost-effectiveness 

[11]. We examined the potential of utilizing smart speakers to facilitate communication in human–robot 

interaction (HRI) scenarios. 

For the past decade, robotics research has focused on developing robots with cognitive skills and the 

ability to act and interact with people in complex and unconstrained environments. To achieve this, 

robots must be capable of safely navigating and manipulating objects, as well as understanding human 

speech. However, in typical real-world scenarios, individuals who are speaking are often located at a 

distance, posing challenges for the robot’s microphone signals to capture the speech [12]. Researchers 

have addressed this challenge by working on enabling humanoid robots to accurately detect and locate 

both visible and audible people. Their focus has been on combining vision and hearing to recognize 

human activity. 

The sense of taste is the most challenging sense to replicate in the structure of robots. A lot of research 

has been conducted on this subject, but a definitive solution has not yet been reached. The human 

tongue, despite its small size, is highly complex, with different parts responsible for perceiving different 

flavors—bitter, sour, and salty—which adds to the difficulty of electronically reproducing the tongue. 

However, robots can now have a sense of taste. They can be programmed to detect flavors and 

distinguish between different tastes. This is used in the food industry to ensure that food products meet 

the required quality standards [13]. The study presented a review of an e-tongue, a powerful tool for 

detecting and discriminating among tastes and flavors. It consists of a sensor array composed of several 

types of sensors, each sensitive to a different taste. By analyzing the output of these sensors, the 

electronic tongue can detect and differentiate between various tastes and flavors. Additionally, the 

electronic tongue can measure the concentration of a specific substance in a sample, as well as its 

bitterness and sweetness. 

The Sixth Sense is a revolutionary new technology that can help to bridge the gap between humans and 

machines. It uses advanced artificial intelligence to recognize and respond to the user’s environment 

and surroundings. This technology can be used to create a more personal and interactive experience 

with machines, making them more human-like and helping to improve the overall user experience. The 

potential applications of this technology are endless, and it is sure to revolutionize how humans interact 
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with machines and technology [14]. The researchers developed a gesture-controlled robot with an 

Arduino microcontroller and a smartphone. It uses a combination of hand gestures and voice commands 

to allow for a more intuitive way of controlling robots. With this technology, robots can be given 

complex commands with a few simple gestures. 

 

3. PROPOSED SYSTEM 

The machine learning workflow for classifying robot sensing data involves several key steps. Initially, 

raw data collected from the robot’s sensors is pre-processed by filling missing values with 0 and 

converting categorical data into numerical form using label encoding. The dataset is then split into 

training and testing sets. A Random Forest classifier and a Decision Tree model are trained on the 

training data. Their performance is evaluated on the test set using metrics like accuracy, precision, recall, 

F1-score, and confusion matrix. Finally, the trained models are used to make predictions on new, unseen 

test data, ensuring the models' applicability to real-world scenarios. This structured approach ensures 

the development of robust and accurate machine learning models for robotic applications. 

 

Fig. 1: Block diagram of proposed diagram. 

Step 1: Robot Sensing Data: The first step in our machine learning pipeline is acquiring the data, 

which in this scenario comes from a robot’s sensors. Robots equipped with various sensors collect 

diverse types of data, such as temperature, pressure, proximity, and visual information. This raw data is 

often complex and requires considerable preprocessing before it can be used effectively for machine 

learning tasks.  

Step 2: Preprocess the Dataset: Preprocessing the dataset is crucial for improving the quality and 

reliability of the data fed into machine learning models. This step involves several sub-tasks: 

⎯ Handling Missing Values: Missing values in the dataset can lead to inaccurate models. One 

common strategy is to fill these missing values with 0. This simple imputation method is 

effective when missing values are sparse and randomly distributed. 

⎯ Label Encoding: Object-type (categorical) columns, such as strings, need to be converted into 

numerical values to be processed by machine learning algorithms. Label encoding transforms 

these categorical values into integers. For instance, if a column contains the categories 'red', 

'green', and 'blue', label encoding would convert these to 0, 1, and 2, respectively. 

Step 3: Data Splitting: Once the dataset is pre-processed, the next step is to split it into training and 

testing subsets. Typically, this is done using an 80-20 split, where 80% of the data is used for training 

the model, and the remaining 20% is reserved for testing. This split allows us to evaluate how well our 
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model performs on unseen data, ensuring that the model generalizes well and is not overfitting to the 

training data. 

Step 4: Random Forest Classifier Training: Random Forest is an ensemble learning method that 

operates by constructing multiple decision trees during training time and outputting the mode of the 

classes for classification. It is robust against overfitting and performs well with large datasets. Training 

a Random Forest classifier involves the following steps: 

• Bootstrap Sampling: Random subsets of the data are created with replacement. 

• Building Trees: For each subset, a decision tree is built to its full depth, or until it meets 

specific stopping criteria. 

• Aggregating Results: The final prediction is made by aggregating the predictions of all 

individual trees, typically through majority voting. 

Step 5: Decision Tree Model Training: A Decision Tree is a simple, yet powerful, model that splits 

the data into branches based on feature values. It aims to partition the data such that each branch ends 

in a leaf node representing a class label. Training a Decision Tree involves: 

• Selecting the Best Splits: At each node, the best split is chosen based on a criterion like Gini 

impurity or Information Gain, aiming to maximize the separation of classes. 

• Recursion: This process is recursively applied to each branch until a stopping condition is 

met (e.g., a maximum tree depth or a minimum number of samples per leaf). 

• Pruning: Optional post-processing can be applied to remove branches that add little 

predictive power to prevent overfitting. 

    Step 6: Performance Evaluation for Both Classifiers 

• After training the models, their performance is evaluated using the test dataset. Common 

metrics include: 

• Accuracy: The proportion of correctly classified instances out of the total instances. 

• Precision, Recall, and F1-Score: These metrics are particularly useful in imbalanced datasets, 

where one class might be more frequent than others. Precision measures the accuracy of 

positive predictions, recall measures the ability to find all positive instances, and the F1-score 

is the harmonic mean of precision and recall. 

• Confusion Matrix: A table that summarizes the performance of a classification algorithm, 

showing the true positive, false positive, true negative, and false negative counts. 

Step 7: Prediction Using New Test Data: The final step involves using the trained models to make 

predictions on new, unseen data. This data must be pre-processed in the same manner as the training 

data (e.g., handling missing values and label encoding). Once pre-processed, the new data is fed into 

the trained classifiers, which then provide predictions. These predictions can be used for various 

applications, such as guiding a robot's actions which is surface identification. 

4. RESULTS AND DISCUSSION 

Figure 2 presents a visual representation, such as a count plot, illustrating the distribution of anomaly 

categories within the loaded dataset. Figure 3 presents the Receiver Operating Characteristic (ROC) 

curve for the Random Forest Classifier, providing insights into its true positive rate versus false positive 

rate across different thresholds. Figure 4 illustrates the ROC curve, but for the Decision Tree Classifier, 

allowing users to compare the classification performance of different models. Figure 5 provides a side-
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by-side comparison of performance metrics between the Random Forest Classifier and the Decision 

Tree Classifier, enabling users to make informed decisions about model selection. Figure 6 shows the 

results of the model predictions on a test dataset within the GUI, allowing users to visualize and interpret 

the model's performance on unseen data. 

 

 

 

Figure 2: Shows the count plot of floor categories in the dataset. 

 

Figure 3: Displays the ROC curve graph for the random forest classifier. 



Page 677 Vol 13 Issue 05,May 2024 ISSN 2456 – 5083 

 
 
 
 
 

 
 

 

Figure 4: Displays the ROC curve graph for the decision tree classifier 

 

Figure 5: Displays the comparison of performance metrics of the RFC and Decision Tree models. 
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Figure 6: Displays the prediction of test data in GUI. 

5. CONCLUSION 

In this project, an artificial intelligence approach has been applied to the surface identification of robot-

sensed data. The utilization of machine learning techniques has demonstrated its effectiveness in 

classifying and identifying different surfaces based on sensor data collected by a robot. The accurate 

surface identification has significant implications for various applications, including robotics, 

autonomous navigation, and industrial automation. The model's performance has been evaluated 

through metrics such as accuracy, precision, and recall, demonstrating its capability to reliably identify 

surfaces. The successful implementation of artificial intelligence in surface identification enhances the 

robot's ability to interact with and navigate through diverse environments. 
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