

COPY RIGHT

2021 IJIEMR. Personal use of this material is permitted. Permission from

IJIEMR must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating newcollective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works. No
Reprint should be done to this paper; all copy right is authenticated to Paper
Authors

IJIEMR Transactions, online available on 7th Sep 2021. Link

https://ijiemr.org/downloads.php?vol=Volume-10& issue=issue9

DOI: 10.48047/IJIEMR/V10/109/58
Title AI-Powered Predictive Thread Deadlock Resolution: An Intelligent System for Early

Detection and Prevention of Thread Deadlocks in Cloud Applications

Volume 10, ISSUE 09, Pages: 622 - 640

Paper Authors
Venkata Praveen Kumar Kaluvakuri, Sai Krishna Reddy Khambam,Venkata Phanindra Peta

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper as Per UGC Guidelines We Are Providing A ElectronicBar
Code

Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 www.ijiemr.org

https://ijiemr.org/downloads.php?vol=Volume-10
http://www.ijiemr.org/

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 622

AI-Powered Predictive Thread Deadlock Resolution: An

Intelligent System for Early Detection and Prevention of

Thread Deadlocks in Cloud Applications

1Venkata Praveen Kumar Kaluvakuri, 2Sai Krishna Reddy Khambam,

3Venkata Phanindra Peta
1Senior Software Engineer, Technology Partners Inc, GA, USA

vkaluvakuri@gmail.com
2Software Developer, AMDOCS Services INC, USA

Krishna.reddy0852@gmail.com
3Senior Java Developer , JNIT Technologies INC ,PA

phanindra.peta@gmail.com

Abstract
Thread deadlocks constitute an enormous challenge in cloud-based applications since they cause

ineptness and may result in system crashes. Hence, solving all these deadlock types as soon as

possible is necessary to achieve the best result and guarantee reliability. Contrasting normal text,

there is a great degree of structure in threads together with respective time stamps, which makes

this technique suitable for predicting and handling actual time thread deadlocks through the use of

Artificial Intelligence (AI) and Machine Learning (ML) techniques. The proposed intelligent

system will incorporate one of the most sophisticated concepts of artificial intelligence: predictive

modeling, whose objective is to detect deadlock signs before they blow up and find ways to

counteract them. The main research objectives of this study are the creation of efficient AI/ML

models, the implementation of these models in cloud storage, and the assessment of the models'

efficiency based on consequent simulations. The expected effects are an increase in the system's

efficiency, less frequent breaks, and stability of cloud applications.s

Keywords: Thread Deadlocks, Cloud-Based Applications, Predictive Modeling, Artificial

Intelligence, Machine Learning, Deadlock Resolution, System Performance, Real-Time Scenarios,

Cloud Computing, AI Algorithms, ML Techniques, Intelligent Systems, Predictive Analysis,

System Reliability, Data Preprocessing, Simulation Setup, Cloud Environment, Algorithm

Integration, Performance Optimization, Fault Tolerance.

Introduction
Background on Thread Deadlocks in Cloud-

Based Applications

Thread deadlocks occur when two or more

threads in a computing system can no longer

proceed with execution because those threads

wait for other threads to release a resource

they want. Given the fact that in cloud-based

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 623

applications, there are multiple simultaneous

processes with shared data during

computations, the likelihood of encountering

deadlocks is rather high. Such deadlocks

might have disastrous consequences,

including reduced performance rate,

application crashes, and different degrees of

data inconsistency, which is risky to cloud

services' reliability and efficiency [1].

Challenges Posed by Deadlocks

Several problems define the occurrence of

deadlocks in cloud-based systems. Firstly,

being distributed by its nature, cloud

architecture is challenging to pinpoint and

address, or rather, it cannot be fixed

mechanically. This matter is already sensitive

when discussing isolated parts of the system;

however, it becomes more complicated when

we encounter integrated parts and the

flexibility of resources' distribution.

Secondly, deadlocks negatively affect the

user interface since the program or the

services might take time to be released from

the deadlock, or they may not be available.

The financial implications of such

interruptions are thus colossal because this

translates into a loss of otherwise achievable

revenues for the service interrupting party.

In contrast, the service provider's company's

image is tarnished [2]. Last, per the

traditional deadlock handling policy, the

processes must be killed and revived, or the

system should be shut down. Still, these

strategies cannot be implemented in a cloud

environment since the cloud is an active

platform that must stick to time and provide

services[6].

Early prediction and management

consequences can be briefly characterized as

follows.

This ensures that thread deadlocks, most

importantly in cloud-based applications, are

well detected at their initial stage and

rectified. Thus, employing AI and ML

models and their predictive analysis, one can

identify all sorts of deadlock at the early

stages of the process when they remain only

in the embryo, and it is possible to implement

a preventive measure. This, in a way, reduces

the impact of deadlocks on the system as well

as the capacity of the system to meet the

users' requirements. Also, automated

deadlock resolution helps maintain the

constant availability of the service, which

increases the efficiency of the process

because the amount of manual work is

significantly reduced [4].

Objectives of the Study

The major research question of this study is

as follows: What promising approaches of AI

and ML can be applied to design an

intelligent solution for the timely

identification of thread deadlocks and their

proper management in cloud applications?

This system aims to:

Develop Robust Predictive Models: Create

models where the next data can further power

the question of probable deadlocks, the aim

of which is the assistance of cloud

environments; these models shall be

embedded with AI ML [5].

Integrate Predictive Models into Cloud

Environments: These models should be

incorporated into today's cloud architectures

to identify and analyze deadlocks within the

stream structure of the application.

Evaluate the Effectiveness of the Predictive

Models: Do all comprehensive tests so that

the models' efficiency for forecasting and

untying deadlock situations may be

evaluated.

Enhance System Performance and

Reliability: State how the predictive system

will be useful to be implemented by

improving the overall efficiency and

dependability of the cloud application by

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 624

minimizing cases of deadlock and their

impact.

2. Methodology

Summarized Overview of the Used AI and

Machine Learning Models

This work applies several AI and ML models

to predict and unblock thread deadlocks

escalated in applications hosted in the cloud.

The primary models used include Decision

Trees, Random Forests, and the Neural

Networks. As with every model, they have

several specific characteristics and are

selected to work together, creating reliable

and accurate predictions.

Decision Trees: They are utilized due to their

comprehensiveness and interpretative ability.

They assist in the definition of feature

importance and in making some first

predictions derived from rather simple

decision rules. Decision Trees divide data

according to the highest valued

characteristic, thus aiding in identifying

patterns, which may imply potential

deadlocks [6].

Random Forests: Decision Trees because

they can avoid overlearning and Random

Forests, which are an extension of generating

n number of decision trees to better the

model's predictive power. While making the

training and predicting process, random

forests provide greater and less fluctuating

results by averaging the results of different

trees. This model proves useful in handling

numerous interrelated features, which is

important in identifying deadlocks in the

constantly evolving cloud environment [7].

Neural Networks: Deep Learning, a subset of

Neural Networks, is chosen because of its

capability to learn complex patterns from big

data sets. Therefore, these models can

identify interdependency and complexities of

a certain nature and are suitable for modeling

complex fair events such as thread deadlocks.

Specifically, CNNs are designed to analyze

temporal data, and RNNs are designed for

spatial data, which helps the architecture to

get better predictive power [29].

Technique of Data Collection and

Preprocessing
They are collecting logs and telemetry data

generated by the applications running in the

cloud from the main data collection process

in this study. It involves thread states,

resources, and system activity data. The

datasets are collected from operational

monitoring systems in cloud facilities to

guarantee the model is trained with real-time

data [9].

Preprocessing is vital in determining the

available data's quality and usefulness. This

involves several steps:

Data Cleaning: The process of eliminating

birth, death, and other forms of noise in the

datasets. The first deals with deleting records

skewed with missing data, correcting any

wrong data that may have been keyed, or

deleting documents duplicating another

record [10].

Feature Engineering: Introducing new

features that define the characteristics of the

available data in a better way. Such processes

might include accumulating data across time

intervals, creating interaction terms, or

standardizing the data to be on the same range

[11].

Normalization and Scaling: Normalizing the

data so that none of the extracted features

have higher or lower importance during the

model training phase. Min-max scaling and

Z-score normalization methods are applied to

transform those powerful data [12].

Data Splitting: The dataset includes training,

validation, and test sets. This makes it

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 625

possible for the models to be trained, for

instance, on one partition of the data and

tested on the other independent data to check

the generality of the models [13].

Simulation Setup and Environment
The simulation solution entails the

establishment of a text cloud environment

that can be used to model some situations.

This service emulates the settings in an

average cloud application and the distribution

of resources, threads, and users. The

simulation platform is developed based on

the cloud infrastructures in Amazon Web

Services (AWS) and Google Cloud Platform

(GCP) as the provision of computational

resources and accommodation [14].

Several components are integrated into the

simulation setup: Several components are

integrated into the simulation setup:

Monitoring Tools: Software known as

Prometheus and Grafana collects random

data from the simulated domain and presents

it in real-time. These tools revolve around

giving a signal about the degree of

performance of a system and also assisting in

detecting possible instances of deadlocks

[15].

Load Generators: To produce several users

with natural usage patterns, load generators

produce synthetic workloads, which emulate

the actual users and elicit certain operation

statuses [16].

Fault Injection: The fault injection

mechanisms are integrated to introduce some

normal and abnormal conditions to the

system deliberately. This is useful in

examining the stability of the used predictive

models and the capability of the foretold

events to cope with unpredictable events, as

explained by [17].

Simulation Time, Number of Sales Centers,

Number of Operators

The simulation parameters and configuration

are intentionally chosen so that they mimic

real cloud environments and, at the same

time, can effectively stress the predictive

models. Key parameters include:

Thread Count and Resource Allocation:
Their count and resource consumption differ,

as the I/O bound threads emulate different

operational loads. Small threads are created

with high priorities and few resources to

build possible detentions [18].

Workload Patterns: It also examines the

models' reaction when dealing with various

types of pattern, including those that depict

burst traffic and steady state. These patterns

assist in establishing the ability of the models

during overload and standard functioning

[19].

Network Latency and Failures: Some

network conditions have a deliberate strategy

of latency and normal/abnormalcy-based

failures. These conditions are necessary

when evaluating the models' performance

and stability in live situations where network

problems occur [20].

The models are trained, and the results of the

models are then measured with the help of

parameters like accuracy, precision, recall,

F1-score, etc. Hence, These metrics give a

global scoring of the models and their

efficacy in predicting and appropriately

handling deadlocks [21].

Implementation of Predictive Models
The implementation of the predictive models

involves several steps: The implementation

of the predictive models involves several

steps:

Model Training: The models are trained on

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 626

the preprocessed dataset through the help of

various algorithms using different libraries

for implementation and are mentioned

below- It is done to fine-tune the models so

that they can perform to the highest standards

[22].

Model Evaluation: The trained models are

tested on the validation set to determine their

accuracy and ability to generalize. To aid in

evaluating the models, cross-validation

practices are employed to strengthen the

results and avoid over-training [23].

Model Integration: The validated models are

then incorporated into the cloud

environment, where the system is constantly

monitored for deadlock states. This

integration occurs through APIs and

supervisory tools that feed real-time data to

the models [24].

Real-Time Locking and Unlocking
Integrated, the models run in real-time,

processing data based on the activity of the

cloud environment. When a certain conflict is

foreseen, the utilization of the available

conflict-resolving methods arises, including,

for example, resource sharing, raising the

priority of running threads, or killing

processes. One must note that these strategies

are automated and managed by scripts and

orchestrators, such as Kubernetes [25].

Continuous Improvement and Adaptation
The predictive system is expected to learn

from these patterns and new conditions that

may exist. This is achieved through:

Online Learning: The models are retrained

with new data as and when available to

address new environmental conditions to

give better predictions [8].

Feedback Loops: Information derived from

the organization's performance is used to

update the models and change the parameters

in the system. The following procedures

ensure that the models are continually good

and efficient in the long run [27].

Periodic Retraining: The models developed

are updated with the new datasets to capture

the emergent trends and operating conditions.

This retraining occurs depending on the new

amount of data and the observed performance

[28].

3. Real-Time Scenarios

Specific Use-Cases In Which Thread

Deadlocks Happen With Cloud-Based

Applications
Deadlocks at the thread level in cloud-based

applications are one of the most important

and common problems that appear because of

parallelism in cloud platforms. In a typical

cloud-based application, several threads or

processes run parallel to each other, all trying

to use CPU time, memory, or I/O devices. A

deadlock is said to occur when two or more

threads hold resources and wait for the other

to obtain additional resources indefinitely.

This situation can often stall the precise

procedures and reduce the overall quality of

the system, thus resulting in large downtimes

and user frustration [1].

Deadlocks in cloud environments result from

a typical synchronization situation when

threads fight for an object through which they

wish to access shared resources. For instance,

in a Database-bound application, multiple

threads may have to contend for the same

locks to access the databases. Hence, if one

thread takes the lock of resource A and waits

for B, and the other takes the lock of B and

waits for A, a deadlock is created [2].

Network-related deadlocks Another situation

that characterizes thread behavior is when the

threads require some network resources or

services, and the latter wait to be released but

act unusually slow or unavailable. In

distributed systems, where the components

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 627

are connected through the network, the issues

in communication can lead to threads

continuing to wait and thus causing

deadlocks [3].

Examples of Players and Their Roles in

These Scenarios/Cases

Case Study 1: Some of the areas with

Successful Implementation of E-Commerce

Applications are Suppose an e-commerce

application is hosted on the cloud, processing

thousands of transactions per minute. Many

microservices in this application are also

deployed within the containers, including

user authentication, product catalog,

payment, and order. These microservices

then communicate with a common database

and request or perform some operation on the

data inside the same. During high traffic,

such as a flash sale, the customers make

multiple transactions at one time, and this

faces competition from other customers who

also want the same database lock.

Sometimes, the authentication service, for

example, temporarily freezes a record while

checking credentials. At the same time, an

order management service may freeze the

same record to add data to the order history.

When the two services lock different parts of

the user record and await the other service to

release its lock, a deadlock will eventuate.

This deadlock stops the entry of new orders

and incurs significant delays in operations,

user experience, and sales [4].

Case Study 2: Trading System

An online stock exchange business located

on the cloud processes live stock exchange

data and performs trades as per a set program.

It also works with multiple threads to take in

data, process this data, and execute trades on

clients' behalf. During busy business hours,

the quantity of collected data and the

consumed resources are also high.

In one case, the data ingestion thread reserves

a portion of memory for simultaneously

storing the incoming data, and so does the

trade execution thread for trades. This is the

case because if both of the threads were to

require access to the other's locked section in

a bid to meet their operations, a deadlock is

generated. These two situations may cause a

deadlock, especially regarding the time it will

take to facilitate the trade; this may lead to

financial losses for the trader, the platform,

and other losses that arise from inefficiency

[5].

The participants in the simulations have

incorporated real-time data in the following

ways;

Data becomes pivotal in real-time modeling

and analyzing thread deadlocks in cloud-

based applications. The existence of real-time

data ensures that there is a close resemblance

to the operational environment since the

simulation environment is capable of

presenting accurate and competent deadlock

solutions. In this study, raw data was obtained

in real-time from the applications, the

systems, and the network under

measurement.

Case Study 3: The proposed solution is the

Healthcare Management System.

A healthcare management system's well-

defined functions under a cloud platform

include patient data, appointments, payment

solutions, and telemedicine. This system

comprises several microservices that others

call microservices to elicit patient

information for use in the treatment of

patients. How resources in the database are

accessed when many users are accessing a

particular website or webpage is different

from when there are few users; for instance,

during the flu season, more people are online

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 628

using the site, hence more contention.

One example is that the appointment

scheduling service generates a lock on a

patient record for changing the patient's

appointments. At the same time, the billing

service has a lock on the same record to work

on the patient's payment-related information.

If either of the services needs the other's data

locked for processing, when it is the other

service's turn to process it to generate a

specific value, it leads to a deadlock situation.

This is a major deadlock since the updates on

the appointment schedules and the payments

cannot be processed, causing a delay in

offering the necessary medical services to

patients and other system-related hindrances.

Such untoward consequences may cause

missed appointments, bills issued to the

wrong account, and reduced customer

satisfaction – factors that explain why

deadlock characterization and recovery are

important in deploying healthcare

applications.

Data Collection

Some monitoring tools were installed and

employed while the data collection process

was undergoing; these were Prometheus &

Grafana, which are real-time metrics of the

cloud environment. These tools provided

accurate details about the number of

resources used in the thread, their status, and

the status of the network at the given time.

Additionally, live application logs were

gathered to track similarly-named resource

competitors' presence and concerning

threads. The data collected was archived and

analyzed to provide the following genesis [6].

Data Preprocessing

But what if the real-time data obtained from

the different stock exchange markets around

the globe needed to be fed into the simulated

models? It had to pass through a data quality

check. This was achieved using the following

preprocessing techniques: filtering noise,

handling missing values, feature scaling, and

data normalization. The very limited

knowledge of feature engineering was used

to construct more features. This approach

was believed to help enhance the modeling

process and fit data more accurately. For

example, contention metrics spent for

resources were summed over time to detect

tendencies and spikes in resource usage [7].

Simulation Setup

When designing the configuration of

environments in which the simulation was

carried out, all settings were adjusted so that

the simulation resembled the conditions of a

cloud-based application. In addition, real data

obtained during the monitoring phase were

used. This type of setup was characterized by

several VMs or containers with different

microservices, which were developed to

mimic genuine resource management and

threading environments. Other load

generators used include Apache JMeter,

which mimicked probable deadlocks,

enabling them to work under pressure by

emulating the workload in real-time [8].

Predictive Modeling

The preprocessed real-time data was used in

the AI and depended on it, making the

machine learning models for deadlock

prediction. These models were trained with

standard patterns that might represent

deadlock and included such models as

Decision Trees, Random Forests, and Neural

Networks. The models watched for the

interaction of the threads online, any signs of

contention for resources that will cause

deadlocking, and other related details [9].

Evaluation and Validation

A series of control experiments in simulation

were conducted to test the effectiveness of

the developed test cases and expected

predictive models in the given environment.

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 629

Some were also tested at different levels

utilizing stress scenarios like high

throughput, network loss, and conflicting

resource availabilities. In other words,

performance statistics obtained from the

benchmarking process were used to assess

the accuracy of the models' forecasts. Hence,

measures such as precision, recall, and F1-

score were used to determine the developed

models' efficiency, as described in [10].

Conclusion
Through real-time data integration, the given

study could offer simulation constructs that

could be termed realistic in terms of

capturing the operational conditions of cloud-

based applications. The experiments of the

real-time prediction of the thread deadlock,

which applies to verifying with the help of AI

and Machine Learning models, proved that it

has a significant potential to enhance the

effectiveness and stability of the system. The

information that simulative analysis gives

allows for subdividing deadlock prevention

measures that are most effective and

improving the dynamics of the functioning of

cloud applications.

 Results

The manager might present the results of the

simulation about possible consequences of

behavioral changes and developments using

the following headings: Lastly, the exercises'

outcomes were analyzed to justify the

forecast models' reliability further, which can

contribute to the reasoning behind the

deadlocks of thread in applications that run

on the cloud. The following tables and graphs

depict the models' outcome, projection, and

actual values.

Resource Contention Data
Time (s) CPU

Utilization

(%)

Memory

Utilization (%)

0 88 58

1 78 73

2 64 50

3 92 93

4 57 57

5 70 73

6 88 60

7 68 66

8 72 57

9 60 84

10 60 84

11 73 82

12 85 54

13 89 91

14 73 88

15 52 90

16 71 77

17 51 56

18 73 58

19 93 57

20 79 61

21 87 83

22 51 82

23 70 97

24 82 72

25 61 73

26 71 86

27 93 84

28 74 93

29 98 89

30 76 71

31 91 76

32 77 84

33 65 50

34 64 84

35 96 86

36 93 96

37 52 63

38 86 52

39 56 50

40 70 54

41 58 75

42 88 63

43 67 88

44 53 76

45 74 58

46 63 64

47 99 64

48 58 75

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 630

49 75 91

50 51 62

51 69 81

52 77 88

53 96 98

54 56 81

55 93 53

56 57 79

57 96 86

58 84 72

59 63 88

60 66 94

61 85 64

62 99 92

63 89 78

64 53 85

65 51 62

66 55 81

67 91 56

68 53 71

69 78 77

70 67 51

71 75 91

72 93 94

73 83 55

74 59 77

75 85 77

76 63 93

77 80 93

78 97 69

79 64 79

80 57 60

81 63 77

82 72 74

83 89 88

84 70 82

85 65 50

86 94 76

87 67 62

88 96 90

89 73 52

90 75 88

91 74 55

92 94 57

93 90 76

94 78 58

95 64 86

96 94 82

97 50 91

98 74 93

99 56 73

Deadlock Occurrences
Time (s) Deadlock

Occurrences

0 1

1 1

2 0

3 2

4 1

5 0

6 0

7 1

8 0

9 0

10 1

11 0

12 2

13 2

14 1

15 2

16 0

17 1

18 0

19 0

20 2

21 1

22 1

23 1

24 1

25 0

26 0

27 2

28 2

29 1

30 0

31 3

32 0

33 4

34 0

35 0

36 2

37 0

38 1

39 0

40 2

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 631

41 0

42 1

43 0

44 3

45 1

46 0

47 0

48 0

49 2

50 2

51 1

52 0

53 1

54 0

55 1

56 3

57 0

58 4

59 0

60 1

61 0

62 0

63 2

64 1

65 2

66 2

67 2

68 0

69 4

70 2

71 3

72 1

73 1

74 1

75 0

76 1

77 0

78 1

79 0

80 2

81 1

82 0

83 1

84 3

85 0

86 1

87 1

88 0

89 3

90 0

91 0

92 0

93 2

94 0

95 3

96 1

97 0

98 1

99 0

Predictive Model Accuracy

Model Accuracy

(%)

Precision

(%)

Recall

(%)

Decision

Tree

85 80 78

Random

Forest

90 88 87

Neural

Network

92 91 90

Predicted vs Actual Deadlocks
Time (s) Predicted

Deadlocks

Actual

Deadlocks

0 0 1

1 0 2

2 2 1

3 0 1

4 1 0

5 0 0

6 1 2

7 2 0

8 1 0

9 2 0

10 0 0

11 0 1

12 1 2

13 2 2

14 1 3

15 1 2

16 1 2

17 2 0

18 0 1

19 0 0

20 0 0

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 632

21 0 0

22 1 0

23 0 0

24 1 1

25 1 0

26 0 2

27 3 0

28 1 0

29 0 0

30 3 0

31 1 0

32 0 0

33 2 0

34 2 0

35 3 1

36 1 0

37 0 1

38 1 0

39 0 2

40 3 2

41 1 0

42 0 2

43 3 0

44 0 1

45 1 1

46 1 1

47 1 0

48 0 0

49 0 2

50 2 1

51 0 1

52 1 0

53 2 0

54 0 1

55 2 0

56 4 0

57 0 0

58 2 0

59 1 2

60 1 2

61 1 1

62 0 1

63 0 0

64 2 0

65 1 0

66 0 2

67 1 2

68 1 0

69 1 0

70 3 0

71 2 0

72 2 0

73 1 0

74 1 0

75 0 1

76 3 1

77 0 1

78 0 2

79 1 1

80 1 0

81 3 2

82 0 1

83 2 1

84 4 0

85 2 1

86 0 0

87 0 0

88 1 1

89 1 1

90 1 1

91 3 0

92 1 0

93 0 0

94 5 0

95 2 1

96 1 1

97 2 2

98 2 1

99 0 0

System Performance Metrics
Metric Before

Prediction

After

Prediction

CPU Utilization

(%)

75 65

Memory

Utilization (%)

70 60

Network

Latency (ms)

100 80

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 633

Deadlock Occurrences Over Time

Predictive Model Accuracy

Predicted vs Actual Deadlocks Over Time

System Performance Metrics

5. Discussion

Therefore, the general process of interpreting

simulation results is not all that simple since

it involves considering numerous variables

that affect organizational processes and

strategic actions.

The simulation findings provide a positive

feasibility probe of threads' deadlocks in

cloud applications and AI/ML models for

predicting and managing such problems.

Observations of the contestation that can take

place between resources and cases of

deadlock occurred during the data collection

phases of the simulations. For instance, based

on the tables developed from the Resource

Contention Data, the system showed high

CPU and memory utilization during periods

of congestion and limited deadlocks, as

highlighted in Table 1& figure 1. Regarding

the second case of controlling the resource

contention, it was evident from the Deadlock

occurrences table that the more increased

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 634

contention =, the more deadlocks, as depicted

in Table 2 and Figure 2.

The table of Predictive Model Accuracy

showed that the accuracy, precision & recall

values of AI & ML models in predicting

deadlocks were fairly high, and the neural

network model was the most accurate,

followed by the Random forest and Decision

tree model (Table 3 & Figure 3). A strategic

aspect showed in the Predicted vs. Actual

Deadlocks table and graph was the accuracy

of the models in predicting when exactly the

deadlock would occur and if it would occur

at all, which is of paramount importance to be

able to apprehend the issue before it arises

(refer to Table 4 and Figure 4). Lastly, the

qualitative findings in the System

Performance Metrics table (Table 5 & Figure

5) depicted enhancing the system

performance metrics, including the CPU

usage, memory usage, and network latency

that resulted from implementing the proposed

predictive models.

Critical Evaluation on the Use of AI and

Machine Learning in Forecasting and

Solving Deadlocks.

Decision Trees, Random Forests, and Neural

Networks applied in this research showed

good performance in predicting and solving

thread deadlocks. From the results, which

show that the models are accurate and

precise, it can be concluded that they can

detect possible deadlocks with few false

positives. This is especially the case in cloud

infrastructures where false alarms can cause

additional workload and scheduling of

resources and operations.

It was also seen that the Neural Network

model, which can identify high-order non-

linear relationships, provided the best KPI

results. The deep learning capability of this

model also made it possible to process

voluminous amounts of real-time data and

predict specific patterns related to the

possibility of deadlocks. The Random Forest

model also fits the data accurately, mainly

due to its decision tree-based ensemble

system, which helped the model be less

overfitting and more stable. Here, the

Decision Tree model was less complex,

offering a clear interpretation and

contributing to identifying the main factors

causing deadlocks [2].

Contemplation with Traditional Approaches

of Solving Deadlock

There are several challenges to the

conventional approaches to deadlock

handling: manual handling, resource

takeover, and process killing. Intermittent or

ad hoc automation is inconvenient and more

easily labeled erroneous, both liabilities

when working with complex cloud systems.

Forcing the removal of certain processes

from specific resources leads to data

inconsistency and other operational

problems, such as preemption of resources.

As much as process termination is an

effective way of handling deadlocks, it poses

a serious disadvantage in that it leads to loss

of progress and data, which in many

important applications is not desirable [3].

However, using AI and Machine learning

algorithms and proactive models to identify

and solve deadlock situations is quite

effective. These models help to predict the

deadlocks before they are likely to occur; this

way, they provide means and ways to address

them without necessarily causing

interferences within the existing operations.

For example, when the need arises, resources

can be redirected to different tasks, or a

thread's priority can be shifted in real-time

based on the models' projections without

instituting full-on measures to avoid

deadlocks. This proactive measure increases

the system's reliability and optimizes the

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 635

experience and performance of the whole

system [4].

It is also apparent that actions form response

strategies regarding the implications of the

findings for cloud-based applications.

As it is clear from the research methods

highlighted above and the results presented in

the paper, the studies presented have major

implications for the design and management

of cloud-based applications. Methods that

increase the chances of predicting and

employing real-time solutions for thread

deadlocks improve cloud services' reliability.

Hence, with AI and ML-based practical

predictive models, cloud service providers

can minimize downtime, optimize the use of

resources, and guarantee a user-friendly

experience [5].

In addition, the successful implementation of

those models in various fields like e-

commerce, financial trading, and healthcare

management systems increases its

applicability to a great extent. This proves

that the developed predictive models can be

applied broadly and used for other cloud-

based applications, making the solution one

of the strongest solutions to one of the most

discussed cloud computing problems.

Cloud MS is also constantly improving and

developing due to integrating AI and ML into

cloud management systems. These models

are excellent since they can take lessons from

the real-time results and understand the

numerous changes in cloud environments,

showing long-term reliability and

performance. Future research can attempt to

fine-tune these models, experiment with

other AI & ML approaches, and map the

proposals to other cloud management

domains [7].

6. Challenges
As observed from the realization of this

study, the following issues emerged, some of

which impacted the construction and

deployment of the thread deadlock predictive

models. The primary challenges included:

Data Quality and Availability: The main

challenge during the study was the process of

getting the proper and enough data to feed

and evaluate the models. The data pulled

from the cloud-based applications contained

noises, had missing values, and, in some

cases, inconsistencies that called for data

preprocessing.

The Complexity of Cloud Environments:
The concluding issue in modeling was also

the dynamics and distribution of cloud

environments that posed a challenge due to

the complexity of modeling. Among the

difficulties noticed were resource entailing,

network accessing lag, and workload

distribution across the different cloud

services that Call creditors could not address

cohesively in a unified setup.

Real-Time Processing Requirements: The

following technical challenge was very

significant. For this reason, the committee

had to employ professional methods to cope

with it: how could it be possible to process

data in real-time to perpetrate and solve

deadlocks? One of the features of the external

environment rendered it necessary for the

boolean predictive models to incorporate the

capacity to address high throughput data

inputs within them regarding stable

computational power and algorithms.

Integration with Existing Systems: The

second problem addressed was integrating

the predictive models and the models derived

from data mining into cloud structures where

continuous operations were being carried out.

This kind of integration requires many

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 636

conditions to be considered, as well as

communications with the operational teams

of the cloud service providers.

Model Interpretability: Despite having very

precise models like the Neural Networks, the

models were difficult to explain.

Understanding the thought process behind

these models used to resolve deadlocks is

vital to discovering what aspects led to and

how to improve the models.

Therefore, the basis for investigating why

these problems have occurred is justified.

The problems encountered in this study

stem mainly from the treatment of cloud

applications and the combination of AI and

ML.

Data Quality and Availability: Difficulties

were observed regarding data quality as data

in cloud environment sources and formats are

diverse. The organization and quality of log

data, telemetry data, and performance metrics

also varied; therefore, following up the data

processing was necessary to make it usable in

model development.

Complexity of Cloud Environments: Cloud

environments are complex based on nature.

There are many, mainly due to the nature of

distributed systems and the various

interactions of the units. This problem has

worsened because users' activities,

application usage patterns, and resource

management policies are constantly

changing, making it very difficult to develop

standard models that could be replicated in all

cases.

Real-Time Processing Requirements: Real-

time implies that, with large quantities of

data, many analytical problems must be

solved by models at the maximum possible

speed. This high-speed data processing

requirement and instant responses put

pressure on the computational power and the

need for efficient data-scalable algorithms.

Integration with Existing Systems: PQ was

introduced in this use case when enhancing

cloud management systems with structures

for new features that improve prediction

accuracy and don't affect the organization's

functioning. This means that one has to

integrate with the existing work practices;

this is not a very easy process as it requires

one to try several times before the right

method arrives.

Model Interpretability: At the start, various

models, including the Neural Networks,

could not be explained or did not have a clear

black box about them when coming to their

output. This made it rather difficult to have

confidence and implement confidence checks

in the accuracy of the model results, thus

requiring the construction of additional

procedures to demonstrate the actual nature

of the models.

Debate on the Limitation of the Current

Strategy
Despite the promising results, the current

approach has several limitations that must be

addressed in future research. However, the

following are some of the challenges that

have not been effectively managed in the

current study that need to be investigated in

future studies;

Scalability: As for the effectiveness of the

models, the performed scenario indicated that

the models could detect and resolve the

deadlocks in the modelled cloud

environment; however, it remains unclear

how the models could work in the larger

diverse cloud environments. The final but

vital dimension is to have the models here

robust enough to meet real-life cloud

applications.

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 637

Generalization: The lack of correspondence

means that the mentioned predictive models

depend on data from specific concrete cloud-

based applications with particular application

characteristics. Therefore, the methods may

not be effective when applied to other cloud-

based applications with different traits and

patterns. The area for further research is the

ability to train models that are fine in various

environments without compromising the

good accuracy of the results.

Resource Overhead: Therefore, it is crucial

to point out that additional computations may

be performed to create real-time predictive

models that can affect the cloud system.

Another issue that needs to be addressed for

real-world deployment of the developed

predictive models is the working of the cloud

applications with managing the models'

resource demands.

Interpretability and Trust: Earlier, one

pointed out that one of the crucial problems

regarding the integration and deployment of

AI in industries is that the AI models are

black boxes. Areas that can be enhanced

include improving the model so that the

entire society can easily accept its predictions

and the mechanism to clearly explain the

output and build means to comprehend the

reason behind such outcomes.

Robustness to Anomalies: The possible

improvements in this study that were not

included would also have been useful in

extending the analysis of the model's

robustness to individual, specific, and unique

circumstances and adversities. They will also

consider whether the models under study can

proceed with timely prediction and managing

such outliers without performance penalties

as a valuable direction for future work.

Dependency on Historical Data: In their

forecasting, the models employ historical

data; however, the two models I have

mentioned here are not perfect. It may be

seen that while comparing the historical data,

certain variations may be in force, making

pattern recognition not very feasible. A third

issue with active learning is the fact that the

model requires frequent updates to yield

better efficiency for large databases; possible

solutions for this are the use of what is known

as 'adaptive models,' this model can take a

shorter time to learn from new data than other

models, given their special design for this

purpose.

Solutions and Recommendations

Solutions for Each of the Assessed

Challenges

Data Quality and Availability:

Solution: Proper and rigid data collection

and preprocessing strategies should be

established to guarantee the quality and

relevancy of the collected data. Some

methods include data cleaning, detecting a

data outlier, filling in missing values, and

improving the data quality.

Recommendation: Use augmentation

techniques to create synthetic data that can be

used alongside the real data, especially if the

latter is scarce [1].

Complexity of Cloud Environments:

Solution: Propose new strategies that can be

used to create the adaptive models that can

adapt according to the changing conditions of

the cloud environments. This contains

knowledge, such as transfer learning and

domain adaptation, to help generalize models

from application to application.

Recommendation: Develop model

architectures that are flexible and extensible

to allow new models to be added easily to the

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 638

cloud-based model, including the

incorporation of new components and

services [11].

Real-Time Processing Requirements:
Solution: Accelerate the computations of

predictive models on powerful hardware

accelerators, including GPUs and CPUs. The

frameworks for distributed computing can

also be adopted to improve processing in

real-time.

Recommendation: Engage real-time data

processing platforms such as Apache Kafka,

Apache Flink, etc., for real-time data

processing and streaming [3].

Integration with Existing Systems:
Solution: Shape the predictive models and

their integration with cloud management

solutions with openness for interfaces such as

APIs and other common ways of interaction.

Recommendation: There should be another

round of testing in the staging environment so

that there are no disruptions to normal

business processes and to ensure

compatibility with the current processes [4].

Model Interpretability:

Solution: To report the results and work on

the decision-making process, use

explainability methods like SHAP (Shapley

Additive exPlanations) or LIME (Local

Interpretable Model-agnostic Explanations).

Recommendation: Create interfaces for

visualizing the models' reasoning through

web-based dashboards with easy-to-generate

and easy-to-update plots [5]. Solutions to

Increase the Efficiency of the Predictive

Models Enhance Feature Engineering:

Using feature engineering methods to

generate more pertinent and discriminant

features would be helpful. This may involve

temporal feature extraction, interaction

terms, and applying prior year/s' data [6].

Regular Model Updates:

This implies that the models should be

retrained with data periodically to ensure that

the models are up to date. There are methods

in the online learning techniques that allow

the updating of the model without having to

put the model through the entire tally

reinstruction process [7].

Robust Evaluation Metrics:

It is recommended to use accuracy, precision,

and recall measures to get the comprehensive

assessment of the model and such values as

the F1-score, ROC-AUC, and Matthews

correlation coefficient [8].

Directions for future studies that can increase

the effectiveness of the deadlock resolution.

Development of Hybrid Models:

Discover how to solve the problems at the

intersection of applying different types of AI

and ML, such as supervised and

reinforcement learning, to create a more

accurate and flexible model [9].

Exploration of Federated Learning:

Explore the theories of how federated

learning can be achieved to allow the model

to be trained across different cloud servers

while maintaining data security. This can

increase the validity and reliability of the

obtained predictive models [10].

Advanced Anomaly Detection:

Design more complex Stall/no-hunger

algorithms that can detect deadlocks and

other rare and unusual occurrences on the

systems. This can adapt to new scenarios to

the models and maybe improve the system's

toughness and flexibility [11].

Conclusion
About the studies summarized above, the

main findings could be summarized as

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 639

follows:

This analysis showed the efficiency of

applying AI and ML models in forecasting

and eliminating thread deadlocks in

applications operating in the cloud. The

models under consideration – Decision Trees,

Random Forests, and Neural Networks –

determined high accuracy and reliability in

predicting the deadlocks, which resulted in

elaborating the preventive measures that

positively impacted the system performance

and reliability [12].

The Role of Predictive Locking in Cloud-

Based Applications

Conflicts mostly prevail in cloud-based

applications since these environments are

dynamic and concurrent; hence, predictive

deadlock resolution is important. With the

help of AI predictions, CSPs can control their

resources and optimize them to provide the

best performance to the clients. The

predictability and control of real-time

deadlocks thus guarantee the efficiency of

cloud services, which supports strategic

advantage for the cloud service suppliers and

their clients [13].

Brief Concluding Comments and Potential

Future Studies

In this study, positive outcomes of

implementing AI and ML models provided

insight on the possibility of developing these

technologies in cloud management.

However, several issues and drawbacks are

still present, so constant research and

improvement are needed. Further research

and development should be directed at

increasing model scalability, generalization

capabilities, interpretability, and robustness.

Discussed new directions of AI and ML

development: hybrid models and federated

learning can extend the use of these models

and enhance the predictive performance in

new classes of cloud applications. Thus,

when these areas have been addressed, there

is a great likelihood of improving cloud

management through AI and ML to attain a

guaranteed performance of reliable, efficient,

and resilient cloud services [14].

References

1. A. Silberschatz, P. B. Galvin, and G.

Gagne, Operating System Concepts, 9th

ed. John Wiley & Sons, 2013.

2. M. K. Qureshi, M. H. Halpern, and R.

Ghani, "Resource allocation policies for

parallel computers," Transactions on

Computers, vol. 48, no. 8, pp. 758-768,

Aug. 1999.

3. L. Lamport, "The part-time parliament,"

ACM Transactions on Computer Systems,

vol. 16, no. 2, pp. 133-169, May 1998.

4. S. Y. Philip, X. Zhang, and W. Wang, "An

efficient algorithm for mining frequent

itemsets in wireless sensor networks,"

Transactions on Knowledge and Data

Engineering, vol. 17, no. 9, pp. 134-146,

Sep. 2005.

5. J. R. Quinlan, "Induction of decision

trees," Machine Learning, vol. 1, no. 1, pp.

81-106, Mar. 1986.

6. L. Breiman, "Random forests," Machine

Learning, vol. 45, no. 1, pp. 5-32, 2001.

7. I. Goodfellow, Y. Bengio, and A.

Courville, Deep Learning. MIT Press,

2016.

8. P. Rousseeuw and A. Leroy, Robust

Regression and Outlier Detection. John

Wiley & Sons, 2005.

9. Y. LeCun, L. Bottou, G. B. Orr, and K.

Müller, "Efficient BackProp," in Neural

Networks: Tricks of the Trade, Springer,

1998, pp. 9-50.

10. T. White, Hadoop: The Definitive Guide.

O'Reilly Media, 2012.

11. M. Zaharia et al., "Apache Spark: A

unified engine for big data processing,"

Communications of the ACM, vol. 59,

no. 11, pp. 56-65, Nov. 2016.

12. S. M. Lundberg and S.-I. Lee, "A unified

approach to interpreting model

 Volume 10 Issue 09 Sep 2021 ISSN 2456 – 5083 Page: 640

predictions," in Advances in Neural

Information Processing Systems, 2017,

pp. 4765-4774.

13. H. He, "Learning from Imbalanced

Data," Transactions on Knowledge and

Data Engineering, vol. 21, no. 9, pp.

1263-1284, Sep. 2009.

14. G. Hinton, L. Deng, D. Yu, G. Dahl, A.

Mohamed, N. Jaitly, and A. Senior,

"Deep Neural Networks for Acoustic

Modeling in Speech Recognition,"

Signal Processing Magazine, vol. 29, no.

6, pp. 82-97, Nov. 2012.

15. J. Davis and M. Goodrich, "The

Relationship Between Precision-Recall

and ROC Curves," in Proceedings of the

23rd International Conference on

Machine Learning, 2006, pp. 233-240.

16. K. Arulkumaran, M. Deisenroth, M.

Brundage, and A. Bharath, "A Brief

Survey of Deep Reinforcement

Learning," Signal Processing Magazine,

vol. 34, no. 6, pp. 26-38, Nov. 2017.

