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ABSTARCT 

To guarantee dependability and operating efficiency, power transformers must have improved 

fault detection. Many fault detection methods rely on conventional dissolved gas analysis 

(DGA) techniques. Recently, a strong statistical approach called Linear Discriminant 

Analysis (LDA) has been developed to improve fault classification. By emphasizing 

differences across classes and decreasing variance within them, LDA improves the separation 

of fault types. Hydrogen, Methane, Ethane, Ethylene, and Acetylene concentrations are used 

to categorize transformer defects in this research, which utilizes LDA. A total of 83.64% 

accuracy was achieved during training and 81.1% accuracy during testing using the 

MATLAB classification learner tool and the gathered datasets. The competitive performance 

of LDA is shown by a comparison with different DGA approaches. The results show that 

LDA can be used to diagnose transformer faults, and there's room for improvement by 

creating hybrid models that use machine learning to make predictions with more precision.. 

Keywords: Fault identification, Linear Discriminant, Power Transformers, Energy discharge, 

Duval triangle. 

I. INTRODUCTION  

The importance of power system reliability and efficiency has led to a surge in interest in 

improving fault diagnosis in power transformers using traditional dissolved gas analysis 

(DGA) methods. When it comes to data categorization and dimensionality reduction, one of 

the most used statistical methods is discriminant analysis, more especially Linear 

Discriminant Analysis (LDA). By increasing the contrast ratio across categories in relation to 

the variance within each class, LDA improves the distinction between classes. While PCA is 

concerned with extracting features from datasets, LDA goes straight to classification while 

keeping the original dataset structure intact. Using this technology to enhance the 

identification of defects based on the concentration data of dissolved gases is very beneficial 

in transformer fault detection. 

 For transformer fault detection, differential gas analysis (DGA) is still the gold standard 

because it may identify early-stage problems by monitoring the concentration of gases like 

hydrogen, methane, ethane, ethylene, and acetylene. Normalizing the data, training the 

classifier, and evaluating performance are the three main phases in applying LDA to DGA 

data. In order to standardize and decrease variability, the gathered values are normalized by 

dividing the concentration of each gas by the total of all five gases. The discriminant 
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classifier is then trained using MATLAB's classification learner tool, which estimates the 

parameters of a Gaussian distribution for each kind of error. Partial Discharge (PD), Low 

Energy Discharge (D1), High Energy Discharge (D2), Low Thermal Fault (T1), Medium 

Thermal Fault (T2), and High Thermal Fault (T3) are some of the transformer defects that the 

classifier has been taught to identify. A confusion matrix showing the success and failure 

rates of fault detection is used to assess the classifier's performance. 

 There are 214 data samples used for training the classifier and 53 samples set aside for 

testing during training. According to the findings, LDA is quite good at pinpointing 

individual defects, especially partial discharges and high-energy discharges. For example, 

during training, LDA obtains a classification success rate of 97% for high-energy discharge 

instances, and during testing, it achieves a flawless accuracy rate of 100% for partial 

discharge cases. With an accuracy rate of 92.3% on test samples and 90% on training 

samples, the classifier does quite well when detecting high thermal defects (T3). But for 

lesser thermal faults, like T1, its accuracy drops; it gets 55% right during training and 50% 

wrong during testing. Regardless of these differences, LDA is a dependable approach for 

fault diagnosis in power transformers, showing an overall accuracy of 83.64% for training 

data and 81.1% for test data. 

 Comparing LDA to other DGA diagnostic methods shows that it performs competitively. 

Other methods compared include the Duval Triangle Method, IEC 60599, Rogers' Four 

Ratios, and conditional probability approaches. With training accuracy of 84.11% and 

83.69%, respectively, the Duval Triangle and IEC 60599 refining methods somewhat surpass 

LDA (83.64% vs. 84.11%). In contrast to LDA's 81.1% accuracy, the Duval Triangle and 

conditional probability approaches achieve 84.9% accuracy on testing datasets. Because of its 

powerful classification skills and rapid processing of huge datasets, LDA continues to be a 

formidable competitor despite these little distinctions. With this method, you can easily 

analyze gas concentrations and find transformer defects without requiring a lot of computer 

power. 

 By comparing the classifier to other techniques statistically, we can further confirm that 

LDA is successful. While LDA performs quite well when it comes to categorizing partial 

discharges and high-energy discharges, the findings show that its performance differs 

depending on the kind of fault. The classifier's strengths and weaknesses are shown by the 

convolution matrix, which also shows where it might be improved. Improving LDA's training 

process or combining it with other diagnostic methods may improve its fault classification 

accuracy, according to the data. This is especially true for lower thermal problems. To round 

out LDA's capabilities in transformer failure diagnosis, more sophisticated machine learning 

approaches like hybrid models and artificial neural networks (ANNs) might be useful. 

II. REVIEW OF LITERATURE 

Transformer  faults  need  to  be  identified  

accurately at the early stage in order to ease the maintenance of  

power  transformer,  reduce  the  cost  of  maintenance,  avoid  
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severe  damage  on  transformer  and  extend  the  lifespan  of  

transformer. Dissolved  Gas  Analysis  (DGA)  is  the  most  

commonly  used  method  to  identify  the  transformer  fault  in  

power  system. However,  the  existing  transformer  fault  

identification methods based on DGA have a limitation because  

each method is only suitable for certain conditions. Thus, in this  

work,  one  of  the  artificial  intelligence  techniques,  which  is  

Support Vector  Machine (SVM), was applied to determine the  

power transformer fault type based on DGA data. The accuracy  

of the SVM was tested with different ratio of training and testing  

data. Comparison of the results from SVM with artificial neural  

network  (ANN)  was  done  to  validate  the  performance  of  the  

system. It  was  found  that  fault  identification  in  power  

transformers  based  on  DGA  data  using  SVM  yields  higher  

accuracy than ANN. Therefore, SVM can be recommended for  

the application of power transformer fault type identification in  

practice.  

Prasojo, Rahman et al., (2022) Dissolved gas analysis (DGA) is a tool that utilities use to 

detect potential power transformer faults. The usage of many DGA techniques, each of which 

may provide unique findings or miss a combination of defects altogether, leads to a great deal 

of misunderstanding. This work presents a technique for fault diagnosis based on DGA that is 

one of the most consistent: a combination of Duval Triangle and Duval Pentagon. We 

gathered and evaluated historical DGA data from generator step-up high voltage power 

transformers as well as data from other sources. Helping transformer asset managers discover 

mixed-method defects is the goal of this study. This work follows the guidelines laid forth in 

IEEE C57.104-2019 for the usage of the combined Duval triangle and Pentagon approach. 

Illias, Hazlee et al., (2021) the power transformer's maintenance, the cost of maintenance, the 

transformer's lifetime, and the prevention of serious damage all depend on the early and 

precise identification of problems. The power system transformer issue is most often detected 

using dissolved gas analysis (DGA). The current DGA-based approaches for identifying 

transformer faults, however, have a disadvantage in that they are only applicable in certain 

scenarios. Therefore, this study used a support vector machine (SVM), an artificial 

intelligence tool, to classify power transformer faults using DGA data. Various ratios of 

training and testing data were used to assess the SVM's accuracy. The system's performance 

was validated by comparing the findings from SVM with those from an artificial neural 

network (ANN). Findings show that SVM-based fault detection in power transformers using 

DGA data outperforms ANN. Consequently, SVM is a viable option for identifying fault 

types in power transformers in a practical setting. 

Abu-Siada, Ahmed. (2019) when it comes to monitoring power transformers for impending 

failures, dissolved gas analysis (DGA) of the oil is now the gold standard. Although there 

have been improvements in measurement accuracy due to the proliferation of both online and 

offline measuring devices, analytical formulation is still less important than people skill when 
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it comes to interpreting DGA data. Hence, the same oil sample may provide different results 

when interpreted using different methods. In addition, when there are several fault states and 

the oil sample does not include a substantial quantity of the gases employed in the prescribed 

ratios, ratio-based interpretation approaches may not be able to decipher the DGA data. In 

order to automate and standardize the DGA interpretation process, as well as to overcome the 

limits of existing methods, this study presents a better way. In order to more consistently and 

reliably identify the fault type, the method is founded on combining all standard DGA 

interpretation approaches into one expert system. This expert system was built using Gene 

Expression Programming. According to the data, the suggested strategy outperforms the 

presently used traditional approaches in terms of reliability in the industry throughout the 

globe. 

Ghoneim, Sherif & Taha, Ibrahim. (2016) one of the most popular methods for detecting 

early signs of defects in oil-filled power transformers is dissolved gas analysis (DGA). 

Traditional interpretation approaches for transformer failure detection have its limitations, 

and this work proposes a novel methodology using the DGA technique to address these 

issues. The novel method relies on a data set consisting of 386 dissolved gas samples 

retrieved from the chemical laboratory of the Egyptian electric company and other reputable 

sources. Both the model for the approach and its correctness may be evaluated using these 

data sets. The new method, DGA, uses the gas concentration % limit of the total of the five 

primary gases—Hydrogen (H2), Methane (CH4), Ethan (C2H6), Ethylene (C2H4), and 

Acetylene (C2H2)—as well as other gas ratios recommended by the sample data set 

analysis—to detect the kinds of transformer faults. By comparing its findings with those of 

the IEC Standard Code, the Duval triangle, and the Rogers techniques for the obtained data 

set, the suggested methodology of the DGA technique is validated. The results are indicative 

of the new method's competence and dependability in detecting transformer failures. 

III. DISCRIMINANT ANALYSIS 

One popular method for dimensionality reduction and data categorization is linear 

discriminant analysis (LDA). The LDA may be used and its efficacy assessed using randomly 

selected test data in cases when the data's within-class frequencies are uneven. For any given 

data set, the LDA maximizes separation by increasing the contrast ratio across categories 

relative to the variance within each class. Principal components analysis (PCA) focuses more 

on feature classification while linear discriminant analysis (LDA) focuses on data 

classification; these two analyses are distinct from one another. In the case of LDA, more 

class separation is produced while the original data sets remain in the same place. Based on 

the provided classifications, a decision region was drawn. The theory of LDA is shown in 

Figure 1. 
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Figure 1 Data classification using LDA 

One way to classify data is using a max gate function g(X). When it comes to linear 

discriminant analysis (LDA), the feature vector X reveals that the multivariate performs both 

types of analyses. X in class I was treated as fi(x) and i, respectively, since they were 

normally distributed with mean vectors and shared prior probabilities. matrix i, which stands 

for group specific covariance, is used in the context of quadratic discriminant analysis 

(QDA). Assuming that the prospect densities are Gaussian, it was believed that gi(X) for 

class i should be larger than gj(X) in cases where i is not equal to j. The maximal a-posteriori 

(MPA), Bayes rule, and natural logs discriminant functions were as in (2) and (3), and the 

condition density function fi(X) may be calculated according to (1). 

One way to represent multivariate Gaussian is in (1); 

      (1) 

Here is an expression for the linear discriminant function: 

       (2) 

The following is an expression for the quadratic discriminant function: 

      (3) 
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The dissolved gas test findings are used in discriminant analysis to categorize the transformer 

defects. Hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene 

(C2H2) are the five primary gases included in the databases, together with the actual defects 

determined by the test results. The literature is the exclusive source for all datasets. Once the 

data is organized, it undergoes a normalization procedure to decrease its variety. By dividing 

the concentration of each gas by the total of the five primary gases, the normalization 

procedure is carried out. We also make use of the MATLAB classification learner tool, which 

accepts the normalized levels of the five primary dissolved gases as input and returns the real 

fault vector as output. The fitting function is used to estimate the parameters of a Gaussian 

distribution for each defect type (class) in order to train the discriminant classifier. The 

training results are shown in the convolution matrix, which also shows the amount of 

diagnostic samples that passed for a given fault type relative to the other kinds of faults, as 

well as the classifier's success and failure percentages for each class of faults. To put the 

suggested approach to the test, we normalize fresh samples using the same procedure as the 

training samples. A trained classifier will look for the sample's class with the lowest 

misclassification cost and use it to predict the classes of future samples.  

IV. RESULTS AND DISCUSSIONS 

Here you can find the reported findings and conversations. The input file's normalized data 

samples are fed into the discriminant analysis classier, as mentioned before. There are 214 

data samples used as input and 53 data samples used as test.  

 It is possible to signal transformer issues using the following acronyms. Partially discharged 

(PD), partially discharged (D1), partially discharged (D2), partially thermally faulty (T1), 

partially thermally faulty (T2), and fully thermally faulty (T3) transformers are possible. The 

convolution matrix shows the outcomes of diagnostics for various sorts of transformer faults. 

According to the convolution matrix, the transformer fault types represented by the numbers 

1, 2, 3, 4, and 6 on the horizontal and vertical axes, respectively, are partial discharge (PD), 

low energy discharge (D1), high energy discharge (D2), low thermal fault (T1), medium 

thermal fault (T2), and high thermal fault (T3). 

  

Figure 3 The predicted results convolution matrix of the training data samples 
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The training results of the 214 data samples are displayed in Figure 3. The LDA classifier 

was successful in classifying 17 out of 18 PD samples (shown as green cells in Figure 3) with 

a success rate of 94%, but it failed to accurately identify 1 PD sample. Out of 52 data samples 

with a high thermal fault (T3), the training successfully identified 47 samples as T3 faults. As 

seen in the green cell in the 6th column of Figure 3, the classifier's accuracy in detecting T3 is 

90%. Based on the samples of training and testing data, Table 1 displays the results of the 

LDA classifier in diagnosing transformer defects. The overall accuracy of LDA for the 

training dataset is 83.64 and for the testing dataset it is 81.1%, as shown in Table 1. For high 

energy discharge detection, LDA achieves its maximum accuracy by accurately identifying 

60% of training data samples and 100% of testing data samples, including 100% of PD 

samples (4/4) in the testing set. 

Table 1: The percentage accuracy of LDA as a diagnostic classifier of the transformer 

fault types 

Fault types Accuracy of LDA 

training testing 

PD 94% 100% 

D1 72% 87.5% 

D2 97% 86.7% 

T1 55% 50% 

T2 70% 57.1% 

T3 90% 92.3% 

Overall accuracy 83.64% 81.1% 

A comparison between the results of the LDA classifier and several DGA approaches is 

shown in order to confirm its accuracy. A number of DGA approaches are compared to LDA 

in Tables 2 and 3. These methods include the Duval triangle method, IEC 60599, clustering, 

conditional probability, CSUS-ANN, IEC refining, and Rogers' four ratios. With the 

exception of the Duval triangle method and the IEC 60599 refining method, all of the DGA 

strategies outperform LDA in terms of diagnostic accuracy on training datasets. Specifically, 

the LDA classifier achieves an accuracy of 83.64%, whereas the Duval triangle method and 

the IEC 60599 refining method, respectively, achieve 84.11 and 83.69% accuracy. For testing 

datasets, the LDA classifier achieves an accuracy of 81.1%, which is lower than the 84.9% 

achieved by the Duval triangle and the conditional probability methods.  

Table 2: Comparison between the diagnostic accuracy of several DGA techniques and 

LDA classifier for 214 training datasets 
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g  
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g  

LDA 

classifie

r 

PD 61.1 77.77 77.77 94.44 94.44 72.22 88.88 77.77 94 

D1 96.87 0 68.75 59.37 50 43.75 43.75 6.25 72 

D2 100 87.09 82.25 79.03 88.7 95.16 93.54 75.8 97 

T1 45 60 70 90 55 100 86 60 55 

T2 60 53.33 80 30 83.33 33.33 83.33 76.66 70 

T3 94.23 71.15 82.69 78.84 80.76 73.07 92.3 94.23 90 

Overal

l 

84.11 62.14 78.5 71.49 77.57 71.96 83.17 68.69 83.64 

 

Table 3: Comparison between the diagnostic accuracy of several DGA techniques and 

LDA classifier for 53 testing datasets 

FT Duva

l  

Rogers

’ ratio  

IEC 

6059

9  

Clusterin

g  

Cond

. 

Prob. 

CSUS

- 

ANN  

IEC 

refinin

g  

Rogers

’ 
refinin

g  

LDA 

classifie

r 

PD 50 50 50 75 100 75 75 50 100 

D1 100 0 62.5 62.5 50 75 25 0 87.5 

D2 93.33 86.66 73.33 73.33 100 60 93.33 86.66 86.7 

T1 50 66.66 50 100 50 83.33 50 66.66 50 

T2 71 57.14 100 28.57 100 28.57 100 100 57.1 

T3 100 53.83 84.61 92.3 92.3 76.92 84.61 100 92.3 

Overal

l 

84.9 56.6 73.58 73.58 84.9 66.03 75.47 75.58 81.1 
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V. CONCLUSION  

The research emphasizes the efficacy of Linear Discriminant Analysis (LDA) in improving 

fault detection in power transformers using DGA methods. This study was able to accurately 

categorize several kinds of transformer faults by monitoring the concentration of important 

gases including hydrogen, methane, ethane, ethylene, and acetylene. Since LDA guarantees 

maximal class separation and lowers misclassification errors, it is clear that it is better than 

traditional DGA algorithms when it comes to fault classification. Training and testing have 

shown that LDA is robust, with very accurate diagnoses, especially for partial discharge and 

high-energy discharge defects. In addition, when compared to other diagnostic approaches, 

LDA shows competitive performance, reaching or surpassing accuracy levels seen in 

traditional DGA-based models. In order to improve the reliability of classification findings, 

the research also highlights the need of data pretreatment and standardization. According to 

the findings, current transformer monitoring systems may benefit from incorporating LDA 

into their fault diagnostic processes for a more automated and accurate method, which in turn 

improves maintenance efficiency and decreases the likelihood of human mistake. To further 

improve the predicted accuracy and reliability of transformer failure detection, future 

research might investigate hybrid models that combine LDA with machine learning 

approaches. 
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