

COPY RIGHT

2023 IJIEMR. Personal use of this material is permitted. Permission from

IJIEMR must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional

purposes, creating newcollective works, for resale or redistribution to servers or

lists, or reuse of any copyrighted component of this work in other works. No

Reprint should be done to this paper; all copy right is authenticated to Paper

Authors

IJIEMR Transactions, online available on 31th Feb 2023. Link

https://ijiemr.org/downloads.php?vol=Volume-12&issue= Issue04

DOI: 10.48047/IJIEMR/V12/ ISSUE 04/207

Title: " REVOLUTIONIZING SOFTWARE QUALITY ASSURANCE: AN AI-DRIVEN FRAMEWORK

FOR IMPROVED DEFECT PREDICTION AND ESTIMATION"

Volume 12, ISSUE 04, Pages: 1616- 1627

Paper Authors

Yamini Dhadi, Hema Bandari, Kayithi Kalpana

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper as Per UGC Guidelines We Are Providing A ElectronicBar

code

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 www.ijiemr.org

http://www.ijiemr.org/

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1616

REVOLUTIONIZING SOFTWARE QUALITY ASSURANCE: AN AI-DRIVEN

FRAMEWORK FOR IMPROVED DEFECT PREDICTION AND ESTIMATION

Yamini Dhadi, Hema Bandari, Kayithi Kalpana

Department of Computer Science Engineering, Sree Dattha Group of Institutions, Sheriguda,

Hyderabad, Telangana

ABSTRACT

In software engineering, guaranteeing high-quality software solutions is essential. Historically,

software quality assurance depended on manual code evaluations, testing, and debugging

procedures. Quality assurance teams adhered to known approaches such as Waterfall or Agile

to oversee the software development lifecycle. Nonetheless, these methodologies exhibited

constraints regarding the early prediction and prevention of faults during the development

process. Moreover, they frequently shown an inability to adjust to the swiftly changing

environment of software technologies and architectures. This has prompted the investigation

of machine learning (ML) techniques as a viable alternative for forecasting software quality,

detecting faults, and enhancing overall software development processes. The necessity for a

novel methodology in software quality prediction has become apparent owing to the growing

complexity of software systems, stringent project timelines, and the market's desire for superior

goods. Machine learning techniques provide a viable solution to these difficulties by utilizing

past data, recognizing patterns, and generating predictions based on the acquired patterns. The

necessity for precise, efficient, and automated software quality prediction methods has become

essential for enterprises aiming to provide dependable software products. This research seeks

to develop sophisticated machine learning models to enhance estimation accuracy by utilizing

pertinent information from a substantial dataset. This study seeks to reconcile traditional

software quality assurance methodologies with the growing requirements of contemporary

software development through the application of machine learning techniques. This research

aims to mitigate the identified problems to improve the software development process,

resulting in superior software solutions and increased customer satisfaction.

Keywords: Software Quality, Machine Learning, Software Development Lifecycle

1. INTRODUCTION

1.1 Overview

Software applications may contain defects, originating from requirements analysis,

specification and other activities conducted in the software development. Therefore, software

quality estimation is an activity needed at various stages. It may be used for planning the

project-based quality assurance practices and for benchmarking. In addition, the number of

defects per unit is considered one of the most important factors that indicate the quality of the

software. There are two directly comparable studies on software quality prediction using defect

quantities in ISBGS dataset. In the first study, the two methods (MCLP and MCQP) were

experimented with the dataset and the results were compared.

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1617

The quality level was classified according to: number of minor defect + 2*number of major

defect + 4*number of extreme defect. The quality of level was to be either high or low. They

used k-fold cross-validation technique to measure MCLP and MCQP’s performance on the

ISBSG database. Release 10 Dataset (released in January 2007) which contained 4,017 records

and 106 attributes was used. After preprocessing, 374 records and 11 attributes remained in the

dataset. In another study, the same data set was used again. The software belonged to high

quality class if it fulfils the following requirements: the extreme defects exist or the number of

major defects is more than 1 or the number of minor defects is more than 10. The rest are

assumed to belong to low quality class. After preprocessing, 746 projects and 53 attributes

remained in the dataset. They used C5.0, SVM and Neutral network for classification.

As an example to a more application oriented study Rashid et al. [5] used case based reasoning

(CBR) for software quality estimation. CBR is a machine learning model which performs the

learning process using the results of the previous experiments. Line of code, number of

functions, difficulty level, and development type and programmers experience are entered and

these attributes are used for estimation. The deviation is calculated by using Euclidian distance

(ED) or The Manhattan distance (MD). If the error in estimation is less than 10% then the

record is saved to the database. Number of inputs that can be obtained from the user is limited.

Also, it is necessary to have close values in the database in order to estimating precise values.

In these studies, quality estimation was done by binary classification. We tried to improve these

prediction models, taking into account the size in terms of function points and using 4-level

classification. We have experimented with recent classification methods shown to be

successful for other prediction tasks.

1.2 Problem Statement

The problem statement for employing an AI-driven approach to enhance software quality

prediction and estimation accuracy is multifaceted, reflecting the complexities and challenges

inherent in modern software development processes. At its core lies the imperative to address

the limitations of traditional estimation techniques, which often rely on simplistic heuristics

and fail to capture the nuanced interplay of factors influencing software quality and project

outcomes.

One facet of this problem is the inherent uncertainty and variability in software development

projects, stemming from diverse technical, organizational, and environmental factors.

Traditional estimation methods struggle to account for this complexity, leading to inaccurate

predictions and costly project overruns. By harnessing the power of advanced machine learning

algorithms, AI-driven approaches seek to mitigate this uncertainty by leveraging historical

project data to uncover patterns and relationships that elude human intuition alone.

Furthermore, the proliferation of software systems characterized by ever-increasing scale,

complexity, and interconnectedness exacerbates the challenges of accurate estimation. As

projects grow in size and scope, predicting quality metrics such as defect density, code churn,

and development effort becomes increasingly daunting. AI-driven approaches offer a path

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1618

forward by enabling the analysis of vast and heterogeneous datasets, allowing for the

identification of subtle indicators of software quality and project risk.

Moreover, traditional estimation techniques often overlook non-technical factors such as team

dynamics, communication patterns, and stakeholder expectations, which can exert a significant

influence on project outcomes. AI-driven approaches provide a means to incorporate these soft

factors into predictive models, thereby enriching estimation accuracy and enhancing the

alignment between project plans and organizational objectives.

However, the adoption of AI-driven approaches for software quality prediction is not without

its challenges. Data quality issues, such as incompleteness, inconsistency, and bias, pose

significant obstacles to model development and deployment. Furthermore, ensuring the

interpretability and transparency of AI-driven predictions is essential to foster trust and

facilitate collaboration between data scientists, software engineers, and project stakeholders.

In summary, the problem statement for employing an AI-driven approach to improve software

quality prediction and estimation accuracy revolves around the need to overcome the

limitations of traditional techniques in the face of increasing project complexity, uncertainty,

and non-technical influences. By harnessing the power of advanced machine learning

algorithms and interdisciplinary collaboration, organizations can pave the way towards more

reliable, informed, and successful software development practices.

1.4 Motivation

The research motivation behind employing AI-driven approaches for software quality

prediction with the goal of improving estimation accuracy stems from the pressing need within

the software engineering community to mitigate the inherent uncertainties and complexities

associated with software development projects. Traditional estimation techniques often rely on

simplistic models and subjective judgments, leading to suboptimal.

Furthermore, the research motivation extends to the pursuit of innovation and advancement in

the field of software engineering. By pushing the boundaries of AI-driven techniques,

researchers aim to develop novel methodologies and tools that not only improve estimation

accuracy but also foster a deeper understanding of software quality attributes and their impact

on project outcomes. Ultimately, the goal is to empower software development teams with the

insights and tools needed to make informed decisions, mitigate risks, and deliver high-quality

software products in a timely and efficient manner.

2. LITERATURE SURVEY

Software quality metrics in quality assurance to study the impact of external factors

related to time:

Software quality assurance is a formal process for evaluating and documenting the quality of

the work products during each stage of the software development lifecycle. The practice of

applying software metrics to operational factors and to maintain factors is a complex task.

Successful software quality assurance is highly dependent on software metrics. It needs linkage

the software quality model and software metrics through quality factors in order to offer

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1619

measure method for software quality assurance. The contributions of this paper build an

appropriate method of Software quality metrics application in quality life cycle with software

quality assurance. Design: The purpose approach defines some software metrics in the factors

and discussed several software quality assurance model and some quality factors measure

method. Methodology: This paper solves customer value evaluation problem are: Build a

framework of combination of software quality criteria. Describes software metrics. Build

Software quality metrics application in quality life cycle with software quality assurance.

Results: From the appropriate method of Software quality metrics application in quality life

cycle with software quality assurance, each activity in the software life cycle, there is one or

more QA quality measure metrics focus on ensuring the quality of the process and the resulting

product. Future research is need to extend and improve the methodology to extend metrics that

have been validated on one project, using our criteria, valid measures of quality on future

software project.

Software defect prediction: do different classifiers find the same defects:

During the last 10 years, hundreds of different defect prediction models have been published.

The performance of the classifiers used in these models is reported to be similar with models

rarely performing above the predictive performance ceiling of about 80% recall. We investigate

the individual defects that four classifiers predict and analyse the level of prediction uncertainty

produced by these classifiers. We perform a sensitivity analysis to compare the performance of

Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA,

open source and commercial datasets. The defect predictions that each classifier makes is

captured in a confusion matrix and the prediction uncertainty of each classifier is compared.

Despite similar predictive performance values for these four classifiers, each detects different

sets of defects. Some classifiers are more consistent in predicting defects than others. Our

results confirm that a unique subset of defects can be detected by specific classifiers. However,

while some classifiers are consistent in the predictions they make, other classifiers vary in their

predictions. Given our results, we conclude that classifier ensembles with decision-making

strategies not based on majority voting are likely to perform best in defect prediction.

A Knowledge Discovery Case Study of Software Quality Prediction:

Software becomes more and more important in modern society. However, the quality of

software is influenced by many un-trustworthy factors. This paper applies MCLP model on

ISBSG database to predict the quality of software and reveal the relation between the quality

and development attributes. The experimental result shows that the quality level of software

can be well predicted by MCLP Model. Besides, several useful conclusions have been drawn

from the experimental result.

Evidence-based software portfolio management:

In this paper we describe and evaluate a tool for Evidence-Based Software Portfolio

Management (EBSPM) that we developed over time in close cooperation with software

practitioners from The Netherlands and Belgium. Objectives: The goal of the EBSPM-tool is

to measure, analyze, and benchmark the performance of interconnected sets of software

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1620

projects in terms of size, cost, duration, and number of defects, in order to support innovation

of a company's software delivery capability. The tool supports building and maintaining a

research repository of finalized software projects from different companies, business domains,

and delivery approaches. Method: The tool consists of two parts. First, a Research Repository,

at this moment holding data of for now 490 finalized software projects, from four different

companies. Second, a Performance Dashboard, built from a so-called Cost Duration Matrix.

Results: We evaluated the tool by describing its use in two practical applications in case studies

in industry. Conclusions: We show that the EBSPM-tool can be used successfully in an

industrial context, especially regarding its benchmarking and visualization purposes.

3. PROPOSED METHD

Figure 1: Block Diagram Proposed System architecture.

XG Boost Model

XGBoost is a popular machine learning algorithm that belongs to the supervised learning

technique. It can be used for both Classification and Regression problems in ML. It is based

on the concept of ensemble learning, which is a process of combining multiple classifiers to

solve a complex problem and to improve the performance of the model. As the name suggests,

"XGBoost is a classifier that contains a number of decision trees on various subsets of the given

dataset and takes the average to improve the predictive accuracy of that dataset." Instead of

relying on one decision tree, the XGBoost takes the prediction from each tree and based on the

majority votes of predictions, and it predicts the final output. The greater number of trees in

the forest leads to higher accuracy and prevents the problem of overfitting.

Upload Dataset

Data Preprocessing

Label Data(X&Y)

Data Splitting

Gradient Boosting

Performance

Evaluation

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1621

Fig. 2: XGBoost algorithm.

XGBoost, which stands for "Extreme Gradient Boosting," is a popular and powerful machine

learning algorithm used for both classification and regression tasks. It is known for its high

predictive accuracy and efficiency, and it has won numerous data science competitions and is

widely used in industry and academia. Here are some key characteristics and concepts related

to the XGBoost algorithm:

• Gradient Boosting: XGBoost is an ensemble learning method based on the gradient

boosting framework. It builds a predictive model by combining the predictions of

multiple weak learners (typically decision trees) into a single, stronger model.

• Tree-based Models: Decision trees are the weak learners used in XGBoost. These are

shallow trees, often referred to as "stumps" or "shallow trees," which helps prevent

overfitting.

• Objective Function: XGBoost uses a specific objective function that needs to be

optimized during training. The objective function consists of two parts: a loss function

that quantifies the error between predicted and actual values and a regularization term

to control model complexity and prevent overfitting. The most common loss functions

are for regression (e.g., Mean Squared Error) and classification (e.g., Log Loss).

• Gradient Descent Optimization: XGBoost optimizes the objective function using

gradient descent. It calculates the gradients of the objective function with respect to the

model's predictions and updates the model iteratively to minimize the loss.

• Regularization: XGBoost provides several regularization techniques, such as L1

(Lasso) and L2 (Ridge) regularization, to control overfitting. These regularization terms

are added to the objective function.

• Parallel and Distributed Computing: XGBoost is designed to be highly efficient. It

can take advantage of parallel processing and distributed computing to train models

quickly, making it suitable for large datasets.

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1622

• Handling Missing Data: XGBoost has built-in capabilities to handle missing data

without requiring imputation. It does this by finding the optimal split for missing values

during tree construction.

• Feature Importance: XGBoost provides a way to measure the importance of each

feature in the model. This can help in feature selection and understanding which

features contribute the most to the predictions.

• Early Stopping: To prevent overfitting, XGBoost supports early stopping, which

allows training to stop when the model's performance on a validation dataset starts to

degrade.

• Scalability: XGBoost is versatile and can be applied to a wide range of machine

learning tasks, including classification, regression, ranking, and more.

• Python and R Libraries: XGBoost is available through libraries in Python (e.g.,

xgboost) and R (e.g., xgboost), making it accessible and easy to use for data scientists

and machine learning practitioners.

4 RESULTS AND DISCUSSION

Figure 1 illustrates the graphical user interface (GUI) of an AI-driven approach designed for

software quality prediction. The interface appears user-friendly and intuitive, featuring various

buttons and sections for seamless interaction with the system. Figure 2 showcases the

functionality for uploading datasets. It provides users with a straightforward mechanism to

input their data, facilitating further analysis and prediction tasks within the system. Figure 3

presents a graphical representation of dataset features, possibly in the form of histograms, bar

charts, or scatter plots. This visualization aids users in gaining insights into the distribution and

characteristics of the dataset. Figure 4 displays the uploaded dataset within the GUI. It presents

a tabular view of the data, allowing users to review and verify the information they have

inputted. Figure 5 offers a graphical depiction of the values contained in the uploaded dataset.

This visualization could help users understand the range, variability, and patterns present in the

data.

Figure 6 demonstrates the preprocessing steps applied to the uploaded dataset. This include

tasks such as handling missing values, encoding categorical variables, and scaling numerical

features. Figure 7 showcases data visualization using a heatmap. Heatmaps are effective for

displaying correlations between different features in the dataset, providing insights into

potential relationships and dependencies.

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1623

Figure 1: GUI of AI Driven Approach for Software Quality Prediction

Figure 2: Presents the Uploading Dataset.

Figure 3: Graphical representation of Dataset Features.

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1624

Figure 4: Display Uploaded Dataset in the GUI.

Figure 5: Shows the Graphical Values of Uploaded dataset.

Figure 6: Preprocessing the Uploaded dataset.

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1625

Figure 7: Data Visualization using Heatmap

Figure 8: Display the Total Features.

Figure 9: Display the performance metrics of ML Algorithms

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1626

Figure 10: Displays CNN Algorithm Performance metrices.

Fig 11: Graphical representation of Performance metrices

Figure 8 provides a summary of the total features present in the dataset. This information

enables users to understand the dimensionality of the data and the complexity of the prediction

task. Figure 9 exhibits the performance metrics of machine learning (ML) algorithms utilized

in the system. This include metrics such as accuracy, precision, recall, and F1-score, allowing

users to assess the effectiveness of different algorithms. Figure 10 focuses specifically on the

performance metrics of a Convolutional Neural Network (CNN) algorithm. CNNs are

commonly used in image recognition tasks, and this figure highlights the algorithm's accuracy

and other relevant metrics. Fig 11 offers a graphical representation of the performance metrics,

possibly in the form of bar charts or line graphs. Visualizing the metrics aids users in comparing

the performance of different algorithms and making informed decisions.

5. CONCLUSION

Successful implementation of a software product entirely depends on the quality of the

software developed. However, prediction of the quality of a software product prior to its

implementation in real-world applications presents significant challenges to the software

developer during the process of development. A limited spectrum of research in this area has

been reported in the literature as of today. We have experimented with recent algorithms that

support multi-class classification. The accuracies achieved by using these algorithms are

Volume 12 Issue 04 April 2023 ISSN 2456 – 5083 Page 1627

impressive as compared to existing models. In comparison to previous directly comparable

studies, acceptable level multiclass quality prediction could be achieved.

REFERENCES

[1] Vijay, T. John, D. M. G. Chand, and D. H. Done. "Software quality metrics in quality

assurance to study the impact of external factors related to time." International Journal

of Advanced Research in Computer Science and Software Engineering, 2017.

[2] D. Bowes, T. Hall, and J. Petrić, "Software defect prediction: do different classifiers
find the same defects?." Software Quality Journal, 26(2), 2018, pp. 525-552.

[3] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case Study of

Software Quality Prediction: ISBSG Database," 2010 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, 2010,

pp. 219-222.

[4] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case Study of

Software Quality Prediction Based on Classification Models: ISBSG Database," The

11th International Symposium on Knowledge Systems Sciences (KSS 2010), 2010

[5] E. Rashid, S. Patnaik, and V. Bhattacherjee, "Software quality estimation sing machine

learning: Case-Based reasoning technique, " International Journal of Computer

Applications, 2012

[6] www.isbsg.org

[7] https://goverdson.nl/

[8] H. Huijgens,”Evidence-based software portfolio management: a tool description and

evaluation”, 20th International Conference on Evaluation and Assessment in Software

Engineering (EASE ’16), 2016.

http://www.isbsg.org/
https://goverdson.nl/

	Yamini Dhadi, Hema Bandari, Kayithi Kalpana

