

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

COPY RIGHT

2024 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating newcollective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper; all copy right is authenticated to Paper Authors

IJIEMR Transactions, online available on 8th Aug 2024. Link

https://ijiemr.org/downloads.php?vol=Volume-13& issue=issue08

DOI: 10.48047/IJIEMR/V13/ISSUE 08/5

Title PATIENT HEALTH MOTORING SYSTEM USING SMART JACKET

Volume 13, ISSUE 08, Pages: 36 - 40

Paper Authors Dr. G.V. Ramesh Babu , Bisati Sai Bhavani

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper as Per UGC Guidelines We Are Providing A ElectronicBar code

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

PATIENT HEALTH MOTORING SYSTEM USING SMART JACKET

Dr. G.V. Ramesh Babu

Associate Professor, Department of Computer Science, Sri Venkateswara University, Tirupati gvrameshbabu74@gmail.com **Bisati Sai Bhavani** Master of Computer Applications, Sri Venkateswara University, Tirupati.

bhavani.bisati@gmail.com

Abstract

This project deals with the healthcare sector by monitoring the condition of the patient and filling the gap in between the multi-specialty hospitals majorly situated in cities and remote areas with no or less medical facilities. We are designing a solution for remote health monitoring by implementing a database and securely storing the data from sensors into it. The user can access the data through a android app and view his/her health status of the measured parameter on the app. We are using Wi-Fi for transmission of data over the internet. The aim of this project is to prepare an affordable solution for remote health application. For this we are implementing a database and accessing that database using a app. The data of a person will be secured by keeping a login portal so that no third party can access data which personalizes the health monitoring system. We are aiming to make a product through this project. The product must be portable and must provide ease of use than that of existing products. Through this project we can fill the gap between rural areas and multi-specialty hospitals by making a solution for remote health application.

Keywords: IoT, Machine Learning, MAX30100

Introduction

INTRODUCTION: Health is a major concern for any living being. We strive to live. As IoT is growing with integrating various domains into itself. The remote-health application will be an exact scenario for introduction of IoT in healthcare sectors. For that, this project provides a solution for health monitoring at any place and at any time. This project is to make a personalized health monitoring system where the data is collected from the person and data will be sent over Wi-Fi and then stored inside a cloud database with identity number assigned for each registered person. Using that id, no the data from the sensor is stored in the database. The person using the device can observe real-time data in his/her profile inside their personal login system. The stored data can be viewed as per the user's requirement in his/her profile. This app can be accessible via Mobile Phone. The user can share their credentials to their doctors for examining the medical condition of the person. By this we can achieve the application for remote health monitoring with IoT.

LITERATURE SURVEY:

 IoT-Based Health Monitoring System Development and Analysis
IoT-Based Healthcare-Monitoring System towards Improving Quality of Life
Indigenous Health Tracking Analyzer

Using IoT [4]IOT Patient Health Monitoring Project [5]SICU Ambience and Patient Health Monitoring System with IOT principles

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

[6]Review of an IoT-based Remote Patient Health Monitoring System.

S.No	Author	Algorithm	merits	Demerits	Future Scope	
1	Turki	HTTP protocol	This IoT	If the sensor get	In future, we	
	М.	over the Internet	device could	damaged then	can add more	
	Alanazi	or via a Local	read the pulse	we cant monitor	sensors to	
		Area Network.	rate and	the patients	develop more	
			measure the	health		
			surrounding			
			temperature.			
2	Sulima	applications are	Real-time	Health	Such growth	
	n	particularly	remote	monitoring is	will be due to	
	abdulm	beneficial for	monitoring via	very important	the increasing	
	alke	providing	connected IoT	in terms of	demand, the	
		healthcare	devices and	prevention,	improvement of	
		because they	smart alerts	particularly if	5G connectivity	
		enable secure	can diagnose	the early	and IoT	
		and real-time	illnesses, treat	detection of	technology, and	
		remote patient	diseases, and	diseases can	the growing	
		monitoring to	save lives in	reduce suffering	acceptance of	
		improve the	case of a	and medical	healthcare IT	
		quality of people's	medical	costs.	software	
		lives	emergency.			
3	V.	IOT based Patient	Smart sensors	The diagnosis	The plans of	
	Munees	Health Monitoring	analyze health	and prompt	tech giants like	
	waran	System with	conditions,	treatment of	Apple, Google,	
		Nested Cloud	lifestyle	various diseases	and Samsung to	
		Security (ECG)	choices, and	can radically	invest in	
		signal analysis	the	improve	bridging the gap	
		and based on an	environment	alternatives for	between fitness-	
		algorithm, heart	and	the medical	tracking apps	
		function is	recommend	treatment of the	and actual	
		monitored	preventative	patient.	medical care are	
			measures,		sure to	
			which will		contribute to	
			reduce the		the process too	
			occurrence of			
			diseases and			
			acute states.			
4	Prachi	we propose an	loT reduces	Remote patient	Despite the	
	patil	innovative system	costly visits to	monitoring does	downsides,	
		that automated	doctors and	have some	further digital	
		this task with	hospital	drawbacks,	transformation	
		ease. Our system	admissions	such as its	in healthcare is	
		puts forward a	and makes	reliance on	inevitable and	
		smart patient	testing mo	technology that	the concept of	
		nealth tracking		not all patients	101	
		system that uses		can allord. RPM		
		Sensors to track		systems need		
		patient health		reliable internet		
		and uses internet		connections.		
		to inform their				

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

loved ones in case	
of any issues.	
5 Santos The heart of the Accessibility of Some of your will	continue to
h proposed system electronic patients may cap	pture and
vardha architecture is medical not have ch	ange the
n reddy Node MCU records allow broadband lan	dscape of
manke microcontroller. patients to access, making he	ealthcare
na receive quality it harder for serv	ices. Thus,
care and help them to it set	eems to be
healthcare participate in hig	gh time to
providers RPM setups look	beyond the
make the right chal	lenges and
medical emb	oark on the
decisions and jo	urney to
prevent	onnected
complications. he	ealthcare
	devices
6 Sangeet These systems IoT devices Personal data A set	nsor in this
ha are embedded help track the can be hacked if	health
yempall with controller's administration this end to end m	onitoring
y are processors of drugs and connection is sy	stem will
with required the response not secure.	collect
sensors. to the Criminals can init	ormation
treatment and use this a	bout the
reduce personal data of patie	ent's health
medical errors. others for their con-	dition. It is
Own benefits. Sina	
Accuracy issues laste	ller in size,
	ller in size, r, and more
may come due at to hondling	ller in size, r, and more ffordable
to handling	ller in size, r, and more ffordable
to handling such massive	ller in size, r, and more ffordable

Proposed Methodology

In this project, we are developing an IoT solution for remote health application. We are developing a personalized approach for implementing Health Monitoring System.

The data collected from the sensor will be stored in a cloud database and can be viewed in his/her personal App. Which the person has the access to see his data collected during the testing process.

Our project consists of two part which are hardware part and software part. Hardware part of the system consists of hardware sensors, communication devices etc. Software part of the project contains a real time database which gets updated frequently with the data from the sensor and App.

Hardware sensor node contains a NodeMCU connected to various sensors. These sensors

are connected to NodeMCU. The programming part is done in Arduino IDE software. We can install NodeMCU ESP8266 board in Arduino IDE and connect to it. NodeMCU supports all major communication protocols like I2C, UART etc.

Figure 4.1 Working Methodology

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

We used five sensors namely MAX30100 pulse oximeter sensor, MLX90614 IR temperature sensor, AD8232 ECG module, MQ-135 Gas Sensor, NEO-6M GPS Module. MAX30100 works through transmitting and receiving IR light. It has an inbuilt ADC to communicate with Arduino. Same is with MLX90614, it also works with IR transmission and reception. These both sensors communicate with microcontroller through I2C protocol. AD8232 which is ECG module[9] works on basis of obtaining electrical pulses using electrodes. It is an analog sensor, and the electrodes are connected to sensor using 3.5mm analog input jack. Displaying the retrieved data from sensors onto the person's app in realtime along with the stored values will be the result of this project.

Results and Discussion

The image shows the results of the continuous data updation in the database by the sensors. The graph depicts the total count of data resources that have been updated by external applications like hardware and app development software.

Figure 4.2 Shows up to now how many times the circuit is in used

ñ	Home	>	DASHBOARD	ACTIVITY RECOMMENDATION	\$	
D	Recent					
Paul III			Teday			
Pin your top products here			9:16 PM 🤌 9:	ogle longrunning Operations GatOpera .	maddipatrakeshti55@gmall.com has executed google.longrunn	~
			5:10 PM 🥕 U	odate services	maddipatirakesh555@gmail.com updated 770103818883	~
MORE	PRODUCTS A		9:10 PM 🥕 O	ompleter: google.apl.serviceusaga.v1	trebase service account@trebase sa management.lam.gservic	~
Marketplace			9:10 PM 🤌 Se	it IAM policy on project	frebase-service-account@firebase-se-management.lam.gservic	~
	Marketplace		9:10 PM 🤌 g:	rogle.api.serviceusage.v1.ServiceUsag	frebase-service-account() frebase-sa-management.lam.gservic	~
	Dillos		9:10 PM 🤌 ge	rogle.internal.firebase.v1.FirebaseInter	maddipatirakesh555(bgmail.com has executed google internal	~
	Daning		5:10 PM 🤌 ge	ogle.internal.frebase.v1.SettingsServi	maddipatirakesh555@gmail.com has executed google internal	~
BPI	APIs & Services	>	Dashboard	gle.internal.frebase.v1.SettingsServi.	maddipatirakesh555ppmail.com has executed google.internal	~
÷	Support	>	Library			
n	O HALF Admin		Credentials	gle.internal.frebase.v1.SettingsServi.	maddpatirakesh555(bgmail.com has executed google.internal	~
0 Instantin		1	0Auth consent screen	çle.internal.trebase.v1.SettingsServi.	maddipatrakesh555@gmail.com has executed google.internal	~
۲	Getting started		Domain verification	gle.internal.frebase.v1.SettingsServi.	maddpatirakesh555(tgmail.com has executed google.internal	~
•	Compliance		Page usage aprocreation	gle.internal.frebase.v1.SettingsServi.	maddpatrakesh555@gmail.com has executed google.internal	~
μib	compilance				maddpatrakesh555@gmail.com has executed google.internal	~
Ø	Security	>	10/25/21			
A	Anthos	>	5:56 PM 🤌 g:	ople internal frebase v1.SettingsServi.	maddipatirakesh555gpmail.com has executed google internal	~

www.ijiemr.org

Figure 9.2 Indicates the results on MIT app

Conclusion

By using this project, we can easily monitor and organize our health data in real-time. The integration of app to this project makes the data accessible from any device connected to the Internet from any location. The biosensors providing accurate data will make this project to be used in everyday life for monitoring. This project delivers a reliable and cost-friendly solution for remote-health application[10] using Internet of Things (IoT) technology.

We can extend the usage of this project by adding more sensors into the sensor node. By adding various sensors into the project makes a complete health monitoring device.

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

We can make this solution wireless by connecting a battery which acts as power supply. This makes the sensor node portable and easy to use. We can develop a well-integrated product which is portable

and can be used as a real-world application.

References

1. J. S. R. Gaurav Raj, Neelam Rup Prakash, "IoT Based EMG Monitoring System,"

a. Int. Res. J. Eng. Technol., pp. 355–361, 2017

2. E. Baba, A. Jilbab, and A. Hammock, "A health remote monitoring application based on wireless body area networks," 2018 Int. Conf. Intell. Syst. Comput. Vision, ISCV 2018, vol. 2018-May, pp. 1–4, 2018, doi: 10.1109/ISACV.2018.8354042.

3. 3.A. B. Jani, R. Bagree, and A. K. Roy, "Design of a low-power, low-cost ECG & EMG sensor for wearable biometric and medical application," Proc. IEEE Sensors, vol. 2017-Decem, pp. 1–3, 2017, doi: 10.1109/ICSENS.2017.8234427.

4. K. S. Sankar et al., "Wireless Health Monitoring System using IOT," Int. J. Sci. Res. Sci. Eng. Technol., vol. 5, no. 03, pp. 268–273, 2019, doi: 10.32628/ijsrset196263.

5. A. J. Z. Jian-Min, "IoT Based Patient Health Monitoring System Using LabVIEW and Wireless Sensor Network," Int. J. Sci. Res., vol. 6, no. 3, pp. 894–900, 2017, doi: 10.21275/ART20171643. www.ijiemr.org