International Journal for Innovative Engineering and Management Research

COPY RIGHT

ELSEVIER SSEN

2021 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors
IJIEMR Transactions, online available on $26^{\text {th }}$ Nov 2021. Link
:http://www.ijiemr.org/downloads.php?vol=Volume-10\&issue=Issue 11

10.48047/IJIEMR/V10/ISSUE 11/63

Title A CRITICAL STUDY ON SPECTRAL, K-SPECTRAL THEORY AND INEQUALITIES OF KIDEMPOTENT MATRICES
Volume 10, ISSUE 11, Pages: 402-407
Paper Authors B Jhansi Bala, Dr. Rajeev Kumar

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER
To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

International Journal for Innovative Engineering and Management Research

A CRITICAL STUDY ON SPECTRAL, K-SPECTRAL THEORY AND INEQUALITIES OF K-IDEMPOTENT MATRICES

B Jhansi Bala
Research Scholar Monda University, Delhi Hapur Road Village \& Post Kastla, Kasmabad, Pilkhuwa, Uttar Pradesh
Dr. Rajeev Kumar
Research Supervisor Monda University, Delhi Hapur Road Village \& Post Kastla, Kasmabad, Pilkhuwa, Uttar Pradesh

Abstract

This abstract provides an overview of three interconnected topics in matrix theory: spectral theory, K-spectral theory, and inequalities of K-idempotent matrices. Spectral theory is a fundamental branch of linear algebra that deals with the study of eigenvalues and eigenvectors of matrices. It plays a crucial role in various applications across different fields, including physics, engineering, and data analysis. The extension of spectral theory to K-spectral theory involves the investigation of matrices with a specific class of eigenvalues known as K -eigenvalues. These K eigenvalues are more general than the traditional eigenvalues, as they consider the properties of K-idempotent matrices. A K-idempotent matrix is a square matrix that satisfies the equation $\mathrm{A}^{\wedge} 2$ = KA, where K is a non-negative integer.

Keywords: - Special, Matrices, Eigenvalues, Matrices, Theory.

I. INTRODUCTION

k-EIGEN VALUE OF A MATRIX

In this section, we shall define a k-eigen value of a matrix as a special case of generalized eigen value problem $\mathrm{A} X=\lambda \mathrm{B}$ for some matrices A and B . For that, first we define a permutation function $\mathrm{K}(x)$ on the unitary space \mathbb{C}^{n}.
Let $\mathrm{x}=\left(\begin{array}{c}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \vdots \\ \mathrm{x}_{\mathrm{n}}\end{array}\right) \in \mathbb{C}^{\mathrm{n}}$ then $\mathrm{K}(\mathrm{x})$ is defined by,
$\mathrm{k}(\mathrm{x})=\left(\begin{array}{c}\mathrm{x}_{\mathrm{k}(1)} \\ \mathrm{x}_{\mathrm{k}(1)} \\ \vdots \\ \mathrm{x}_{\mathrm{k}(1)}\end{array}\right) \in \mathbb{C}^{\mathrm{n}}$, where k is the fixed disjoint product of transpositions in s_{n}.
If K is the associated permutation matrix of k then it can be easily seen that $k(x)=k x$.
It is also clear that $K\left[K^{(x)}\right]=x$.
i.e., $K[k(x)]=\left(\begin{array}{c}x_{k^{2}(1)} \\ x_{k^{2}(2)} \\ \vdots \\ x_{k^{2}(n)}\end{array}\right)=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=x \in \mathbb{C}^{n}$

International Journal for Innovative Engineering and Management Research

Example

Let $\mathrm{x}=\left(\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right) \in \mathbb{C}^{4}$ and let $\mathrm{k}=\langle 1,4\rangle\langle 2,3\rangle$
Then $\mathcal{K}(\mathrm{x})=\left(\begin{array}{l}\mathrm{x}_{\mathrm{k}(1)} \\ \mathrm{x}_{\mathrm{k}(2)} \\ \mathrm{x}_{\mathrm{k}(3)} \\ \mathrm{x}_{\mathrm{k}(4)}\end{array}\right)=\left(\begin{array}{l}\mathrm{x}_{4} \\ \mathrm{x}_{3} \\ \mathrm{x}_{2} \\ \mathrm{x}_{1}\end{array}\right)=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right)=\mathrm{kx}$
Also $\mathcal{K}[\mathcal{K}(\mathrm{x})]=\left(\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right)=\mathrm{x}$

Definition

A k-eigen value of a matrix A is defined to be a zero of the polynomial $\operatorname{det}(\lambda K-A)=0$ This polynomial is known as k -characteristic polynomial.

Definition

A non-zero vector $(x \neq 0)$ in \mathbb{C}^{n} is said to be a k-eigen vector of a complex matrix A associated with a k-eigen value λ if it satisfies $A x=\lambda K^{(x)}$ where $K^{(x)}$ is as defined before. This is equivalent to $A x=\lambda K x$.

Example

$A=\left(\begin{array}{ccc}-1 & -1 & i \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ is a $\langle 1,2\rangle$-idempotent matrix. The $\langle 1,2\rangle$-eigen values of A are
1,1 and -1 . A $\langle 1,2\rangle$-eigen vector corresponding to the $\langle 1,2\rangle$-eigen value 1 is $\left(\begin{array}{c}1 \\ 0 \\ -\mathrm{i}\end{array}\right)$ It can be verified that $\mathrm{Ax}=\lambda \mathrm{Kx}$.
i.e., $\left(\begin{array}{ccc}-1 & -1 & \mathrm{i} \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ -\mathrm{i}\end{array}\right)=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ -\mathrm{i}\end{array}\right)$

Theorem

If A is a complex matrix in $\mathbb{C}^{n \times n}$ then
i. (λ, x) is a (k-eigen value, k-eigen vector) pair for A if and only if it is an (eigen value, eigen vector) pair for KA.
ii. Every matrix A satisfies the k- characteristic equation of KA.
iii. Any set of k-eigen vectors corresponding to distinct k-eigen values of a matrix must be linearly independent.

Proof

i. If (λ, x) is a (k-eigen value, k-eigen vector) pair for A then

$$
\begin{gathered}
\mathrm{Ax}=\lambda \mathcal{K}(\mathrm{x}) \\
\mathrm{Ax}=\lambda \mathrm{Kx}
\end{gathered}
$$

International Journal for Innovative Engineering and Management Research

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL
www.ijiemr.org
$K A x=\lambda x$
Therefore (λ, x) is a (Eigen value, Eigen vector) pair for KA. By retracing the above arguments, we see that the converse is also true.
ii. By Cayley-Hamilton theorem, every matrix A satisfies its characteristic equation. That is, $\operatorname{det}(\lambda I-A)=0$
$\operatorname{det}(\lambda K-K A)=\operatorname{det}[K((\lambda I-A)$
$=\operatorname{det}(\mathrm{K}) \operatorname{det}(\lambda I-A)=0$
$=0$
[by (3.1)]
Therefore the matrix A satisfies the k-characteristic equation of KA. In a similar manner, it can be easily proved that the matrix KA satisfies the k -characteristic equation of A .
iii. Any set of k-eigen vectors corresponding to distinct k-eigen values of a matrix A is the set of eigen vectors corresponding to distinct eigen values of the matrix KA by what we have proved above in (i). Hence they are linearly independent.

II. SPECTRAL CHARACTERIZATIONS OF \boldsymbol{k}-IDEMPOTENT MATRICES

In this section, the spectral resolution of a k-idempotent matrix is determined as well as the diagonalizability of k-idempotent matrices is proved.

Theorem

Let A be a k-idempotent matrix. Then the eigen values of A are zero or cube root of unity.

Proof

Let λ be an eigen value of a k-idempotent matrixA. Then

$$
\begin{align*}
& A x=\lambda x \tag{3.3}\\
& A^{2} x=\lambda A x \\
& A^{2} x=\lambda^{2} x \tag{3.3}\\
& A^{4} x=\lambda^{4} A^{2} x \\
& A x=\lambda^{4} x \\
& \lambda x=\lambda^{4} x \\
& \left(\lambda^{4}-\lambda\right) x=0
\end{align*}
$$

Since $x \neq 0$, we have $\lambda=0$ or $1, \omega$ and ω^{2} where $\omega=\exp \left(\frac{2 \pi i}{3}\right)$

Example

$\mathrm{A}=\left(\begin{array}{cccc}1 & 2 \mathrm{i} & -\mathrm{i} & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -2 \mathrm{i} & \mathrm{i} & 1\end{array}\right)$ is a $\langle 1,4\rangle\langle 2,3\rangle$-idempotent.
The eigen values of A are $\lambda=1,1, \omega, \omega^{2}$.
Theorem
If a matrix $A \in \mathbb{C}^{n \times n}$ is k-idempotent then it is diagonalizable and the spectrum $\sigma(\mathrm{A}) \subseteq$ $\left\{0, \omega, \omega^{2}, 1\right\}$ where $\omega=\exp \left(\frac{2 \pi \mathrm{i}}{3}\right)$. Moreover, there exist unique disjoint oblique projectors P_{i} for $i \in\{0,1,2,3\}$ such that

International Journal for Innovative Engineering and Management Research

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL
www.ijiemr.org
$A=\sum_{j=1}^{3} \omega^{j} P_{j}$
$I=\sum_{i=0}^{3} P_{i}$
Proof
Since $A^{4}=A$, the polynomial $q(t)=t^{4}-t$ is a multiple of $q_{A}(t)$ of A and then every root of $\mathrm{q}_{\mathrm{A}}(\mathrm{t})$ has multiplicity 1 . Hence the matrix A is diagonalizable.
Moreover, it is clear that $\sigma(A) \subseteq\left\{0, \omega, \omega^{2}, 1\right\} \quad$ [by theorem 3.2.1]
We define $P_{i}^{\prime} s$ by the following formula,
$P_{0}=\frac{f_{0}(A)}{f_{0}(0)}$, where $f_{0}(\lambda)=\prod_{i=1}^{3}\left(\lambda-\omega^{i}\right)$ and
$P_{j}=\frac{f_{j}(A)}{f_{j}\left(\omega^{j}\right)}$, where $f_{j}(\lambda)=\prod_{\substack{i=1 \\ i \neq j}}^{3} \lambda\left(\lambda-\omega^{i}\right)$ for $j=1,2,3$
Using $1+\omega+\omega^{2}=0$, we have
$P_{0}=I-A^{3} \quad: \quad P_{1}=\frac{1}{3}\left(A^{3}+\omega A^{2}+\omega^{2} A\right)$
$P_{2}=\frac{1}{3}\left(A^{3}+\omega^{2} A^{2}+\omega A\right) \quad: \quad P_{3}=\frac{1}{3}\left(A^{3}+A^{2}+A\right)$
In the case that $\omega^{j} \notin \sigma(A)$ for $j \in\{1,2,3\}$, we see that $P_{j}=0$. Similarly $P_{0}=0$ when $0 \notin \sigma(A)$.
By spectral theorem, we see that the non-zero P_{i}^{\prime} s so obtained are disjoint oblique projectors (i.e., $P_{i}^{2}=P_{i}$ and $P_{i} P_{j}=0$ for $i \neq j$) to satisfy the decompositions (3.5) and (3.6). The uniqueness of the decompositions can be proved as follows:
Suppose if possible, let $Q_{i}{ }^{\prime}$ s be non-zero disjoint oblique projectors such that $A=\sum_{i=1}^{m} \alpha_{i} Q_{i}$, for complex numbers α_{i} and $\mathrm{I}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{Q}_{\mathrm{i}}$. We wish to prove that this is actually identical with (3.5) and (3.6) except for notations and order of terms. First, it is proved that α_{i} 's are precisely the eigen values of the matrix A.
Since $Q_{i} \neq 0$, there exists a non-zero vector x in the range of Q_{i} such that $Q_{i} x=x$ and $Q_{j} x=0$ for $\mathrm{j} \neq \mathrm{i}$.

$$
\begin{gathered}
A x=\left(\sum_{i=1}^{m} \alpha_{i} Q_{i}\right) x \\
A x=\alpha_{i} X
\end{gathered}
$$

Therefore α_{i} is an eigen value of $\mathrm{A}\left[\right.$ i. e., $\left.\alpha_{i} \in\left\{0, \omega, \omega^{2}, 1\right\}\right]$. Conversely, if λ is an eigen value of A then $A x=\lambda x$

$$
\begin{align*}
& \left(\sum_{i=1}^{m} \alpha_{i} Q_{i}\right) x=\lambda I x=\lambda\left(\sum_{i=1}^{m} Q_{i}\right) x \\
& \sum_{i=0}^{m}\left(\lambda-\alpha_{i}\right) Q_{i} x=0 \tag{3.7}
\end{align*}
$$

Since Q_{i} 's are disjoint, we can find at least one $x \neq 0$ among the non-zero vectors for which (3.7) is linearly independent. Hence, it follows that $\lambda=\alpha_{i}$ for some i. These arguments show that

International Journal for Innovative Engineering and Management Research

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL
www.ijiemr.org
the set of α_{i} 's equals the set of eigen values of A. By suitably changing the order of terms, we have $\mathrm{A}=\sum_{\mathrm{i}=1}^{3} \omega^{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}$.
Since the expression for P_{i} is unique in terms of A, we have $Q_{i}=P_{i}$ for $i \in\{0,1,2,3\}$. Hence the decompositions (3.5) and (3.6) are unique.

III. k-SPECTRAL CHARACTERIZATIONS OF K-IDEMPOTENT MATRICES

A k-eigen value of a k-idempotent matrix is found and an equivalent condition for normality of a k-idempotent matrix is also determined in this section.
Theorem
Let A be a k-idempotent matrix. Then the k-eigen values of a are 0,1 and -1 .
Proof
$A x=\lambda K x$
$K A x=\lambda x$
Pre multiplying by KA, we have

$$
\begin{align*}
& \mathrm{A}^{3} \mathrm{x}=\lambda K A \mathrm{x} \\
& \mathrm{~A}^{3} \mathrm{x}=\lambda^{2} \mathrm{x} \tag{3.10}
\end{align*}
$$

Pre multiplying by A, we have

$$
\begin{align*}
& A x=\lambda^{2} A x \\
& \lambda K x=\lambda^{3} K x \tag{3.10}\\
& \left(\lambda-\lambda^{3}\right) K x=0
\end{align*}
$$

$$
\lambda K x=\lambda^{3} \mathrm{Kx} \quad[\text { using (3.10) }]
$$

Since $K x \neq 0$, we have $\lambda=0,1,-1$.

Example

The $\langle 1,4\rangle\langle 2,3\rangle$-eigen values of example 3.2.2 are $1,1,-1,-1$.

Theorem

If a matrix $A \in \mathbb{C}^{\mathrm{n} \times \mathrm{n}}$ is k-idempotent then $\sigma_{\mathrm{k}}(\mathrm{A}) \subseteq\{0,1,-1\}$. Moreover, there exist unique disjoint oblique projectors Q_{j} for $j \in\{0,1,-1\}$ such that
$K A=Q_{1}-Q_{-1}$
$\mathrm{I}=\mathrm{Q}_{0}+\mathrm{Q}_{1}+\mathrm{Q}_{-1}$

Proof

By (3.2) and theorem 3.3.1, it is clear that $\sigma_{\mathrm{k}}(\mathrm{A})=\sigma(\mathrm{KA}) \subseteq\{0,1,-1\}$.
We define Q_{j} 's by the following formula
$Q_{j}=\prod_{\substack{i=0,1,-1 \\ i \neq j}}^{n} \frac{K A-i I}{j-i}$ for $j=0,1,-1$
Then $Q_{0}=I-A^{3}: Q_{1}=\frac{1}{2}\left(A^{3}+K A\right): Q_{-1}=\frac{1}{2}\left(A^{3}-K A\right)$
In the case that $j \notin \sigma(K A)$ for $j \in\{0,1,-1\}$, we have $Q_{j}=0$. It can be proved that the non-zero Q_{j} 's so obtained are unique disjoint oblique projectors such that satisfying the decompositions (3.12) and (3.13) analogous to the proof of theorem 3.2.3.

Example

Consider the $\langle 1,4\rangle\langle 2,3\rangle$-idempotent matrix A. The oblique projectors of KA are found to be

$$
\mathrm{Q}_{0}=\left(\begin{array}{rccr}
\frac{1}{2} & 0 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right) \mathrm{Q}_{1}=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & \frac{1+\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & -1 & \frac{1-\sqrt{3}}{2} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right) \mathrm{Q}_{-1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \frac{1-\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 1 & \frac{1+\sqrt{3}}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It can be easily verified that the above projectors are disjoint and satisfy the decompositions (3.12) and (3.13).

IV. CONCLUSION

Further it is proved that k-idempotent matrices are $\{3\}$-group periodic. A set of necessary and sufficient conditions for a linear combinations $C=c_{1} A+c_{2} B$ of two commutative idempotent matrices A and B to be k-idempotent, is listed analogous to theorem. Then it is generalized to the problem of characterizing all situations in which the linear combination $C=c_{1} A+c_{2} B$ (where A is an idempotent matrix and B is a tripotent matrix) to be k-idempotent, is thoroughly studied analogous.
Various generalized inverses of a k-idempotent matrix are studied and the corresponding inverses for the elements in group $G=\left\{A, A^{2}, A^{3}, K A, A K, K A^{3}\right\}$ are determined. A condition for the Moore Penrose inverse of a k-idempotent matrix to be k-idempotent is derived. A column and row inverse of a k-idempotent matrix is found and then it is shown that the group inverse of a k-idempotent matrix A is A^{2}. A commuting pseudo inverse of the corresponding elements in group G is also found. The k-idempotency of EP matrices is analyzed in this chapter. An equivalent condition for a k-idempotent matrix to be EP is also determined.

REFERENCES

[1] V. Rabanovich, Yu. Samo 1 lenko, When the sum of idempotents or projectors is a multiple of unity, Funct. Anal. Appl. 34 (2000) 311-313.
[2] J.K. Baksalary, O.M. Baksalary, Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl. 321 (2000) 3-7.
[3] Baksalary, Jerzy \& Baksalary, Oskar. (2000). Idempotency of linear combinations of two idempotent matrices. Linear Algebra and its Applications. 321. 3-7. 10.1016/S0024-3795(00)00225-1.
[4] H. Radjavi, P. Rosenthal, On commutators of idempotents, Linear and Multilinear Algebra 50 (2002) 121-124.
[5] Y. Tian, G.P.H. Styan, A new rank formula for idempotent matrices with applications, Comment. Math. Univ. Carolin. 43 (2002) 379-384.

