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ABSTRACT 

This abstract provides an overview of three interconnected topics in matrix theory: spectral 

theory, K-spectral theory, and inequalities of K-idempotent matrices. Spectral theory is a 

fundamental branch of linear algebra that deals with the study of eigenvalues and eigenvectors of 

matrices. It plays a crucial role in various applications across different fields, including physics, 

engineering, and data analysis. The extension of spectral theory to K-spectral theory involves the 

investigation of matrices with a specific class of eigenvalues known as K-eigenvalues. These K-

eigenvalues are more general than the traditional eigenvalues, as they consider the properties of 

K-idempotent matrices. A K-idempotent matrix is a square matrix that satisfies the equation A^2 

= KA, where K is a non-negative integer. 
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I. INTRODUCTION 

k-EIGEN VALUE OF A MATRIX  

In this section, we shall define a k-eigen value of a matrix as a special case of generalized eigen 

value problem  A𝒳 = B for some matrices A and B. For that, first we define a permutation 

function K  on the unitary space  ℂn.  

Let x = (x1x2⋮xn)ϵ ℂn then K(x) is defined by,  

k(x) = (xk(1)xk(1)⋮xk(1))ϵ ℂn, where k is the fixed disjoint product of transpositions in sn.  

If  K is the associated permutation matrix of k then it can be easily seen that  k(x) = kx. 
It is also clear that K[K(x)] = x. 
i.e., K [k(x)] = (xk2(1)xk2(2)⋮xk2(n)) = (

x1x2⋮xn) = xϵℂn 
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Example 

Let x = (x1x2x3x4)ϵℂ4  and let  k = 〈1,4〉〈2,3〉 
Then  𝒦(x) = (xk(1)xk(2)xk(3)xk(4)) = (

x4x3x2x1) = (
0 0 00 0 101 10 00    

1000)(
x1x2x3x4) = kx 

Also  𝒦[𝒦(x)] = (x1x2x3x4) = x 
Definition 

A k-eigen value of a matrix A is defined to be a zero of the polynomial det (λK − A) = 0This 

polynomial is known as k-characteristic polynomial.  

Definition  

A non-zero vector  (x ≠ 0) in ℂn is said to be a k-eigen vector of a complex matrix A associated 

with a k-eigen value  if it satisfies Ax = λK(x) where K(x) is as defined before. This is 

equivalent to  Ax = λKx. 
Example  

 A = (−1 −1 i1 0 00 0 1) is a 〈1,2〉-idempotent matrix. The 〈1,2〉-eigen values of A are  

1,1 and -1. A 〈1,2〉-eigen vector corresponding to the 〈1,2〉-eigen value 1 is ( 10−i)It can be 

verified that  Ax = λKx. 
i.e.,  (−1 −1 i1 0 00 0 1)( 10−i) = (0 1 01 0 00 0 1)( 10−i) 

Theorem  

If A is a complex matrix inℂn×n then  

i. (λ, x)is a (k-eigen value, k-eigen vector) pair for A if and only if it is an (eigen value, 

eigen vector) pair for KA.  

ii. Every matrix A satisfies the k- characteristic equation of KA.  

iii. Any set of k-eigen vectors corresponding to distinct k-eigen values of a matrix must be 

linearly independent.  

Proof  

i. If  (λ, x) is a ( -eigen value, -eigen vector) pair for  then Ax = λ𝒦(x) Ax = λKx 
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KAx = λx 
Therefore (λ, x) is a (Eigen value, Eigen vector) pair for KA. By retracing the above arguments, 

we see that the converse is also true.  

ii. By Cayley-Hamilton theorem, every matrix  satisfies its characteristic equation. That is,   det (λI − A) = 0   (3.1) det (λK − KA) = det [K ((λI − A) = det(K) det (λI − A) = 0  = 0    [by (3.1)] 

Therefore the matrix A satisfies the k-characteristic equation of KA. In a similar manner, it can be 

easily proved that the matrix KA satisfies the k –characteristic equation of  A. 

iii. Any set of k-eigen vectors corresponding to distinct k-eigen values of a matrix  is the 

set of eigen vectors corresponding to distinct eigen values of the matrix KA by what we 

have proved above in (i). Hence they are linearly independent. 

II. SPECTRAL CHARACTERIZATIONS OF 𝑘-IDEMPOTENT MATRICES 

In this section, the spectral resolution of a 𝑘-idempotent matrix is determined as well as the 

diagonalizability of 𝑘-idempotent matrices is proved. 

Theorem 

Let A be a 𝑘-idempotent matrix. Then the eigen values of A are zero or cube root of unity. 

Proof 

Let λ be an eigen value of a 𝑘-idempotent matrixA. Then 

  Ax = λx        (3.3) A2x = λAx 
 A2x = λ2x       [by (3.3)] (3.4) A4x = λ4A2x Ax = λ4x       λx = λ4x (λ4 − λ)x = 0 

Since x ≠ 0,  we have λ = 0 or 1, ω and ω2 where ω = exp (2πi3 ) 
Example  

A = (1 2i −i 0000 01−2i −1−1i 001) is a 〈1,4〉〈2,3〉-idempotent. 

The eigen values of A are λ = 1,1, ω,ω2. 

Theorem  

If a matrix A ∈ ℂn×n is 𝑘-idempotent then it is diagonalizable and the spectrum σ(A) ⊆{0,ω, ω2, 1} where ω = exp (2πi3 ). Moreover, there exist unique disjoint oblique projectors Pi for i ∈ {0,1,2,3} such that 
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A = ∑ ωjPj3j=1         (3.5) I = ∑ Pi3i=0          (3.6) 

Proof 

Since A4 = A, the polynomial q(t) = t4 − t is a multiple of qA(t) of A and then every root of qA(t) has multiplicity 1. Hence the matrix A is diagonalizable. 

Moreover, it is clear that σ(A) ⊆ {0,ω,ω2, 1}  [by theorem 3.2.1] 

We define Pi′s by the following formula, P0 = f0(A)f0(0), where f0(λ) = ∏ (λ − ωi)3i=1  and Pj = fj(A)fj(ωj), where fj(λ) = ∏ λ(λ − ωi)3i=1i≠j  for j = 1,2,3 

Using 1 + ω + ω2 = 0, we have P0 = I − A3   : P1 = 13 (A3 +ωA2 +ω2A) P2 = 13 (A3 +ω2A2 + ωA) : P3 = 13 (A3 + A2 + A) 
In the case that ωj ∉ σ(A) for j ∈ {1,2,3}, we see that Pj = 0. Similarly P0 = 0 when 0 ∉ σ(A). 
By spectral theorem, we see that the non-zero Pi′ s so obtained are disjoint oblique projectors 

(i.e., Pi2 = Pi and PiPj = 0 for i ≠ j) to satisfy the decompositions (3.5) and (3.6). The uniqueness 

of the decompositions can be proved as follows: 

Suppose if possible, let Qi′ s be non-zero disjoint oblique projectors such that A = ∑ αiQimi=1 , for 

complex numbers αi and I = ∑ Qimi=1 . We wish to prove that this is actually identical with (3.5) 

and (3.6) except for notations and order of terms. First, it is proved that αi’s are precisely the 

eigen values of the matrix A. 

Since Qi ≠ 0, there exists a non-zero vector x in the range of Qi such that Qix = x and Qjx = 0 

for j ≠ i. Ax = (∑αiQim
i=1 )x Ax = αix 

Therefore αi is an eigen value of A[i. e. , αi  ∈ {0, ω, ω2, 1}]. Conversely, if λ is an eigen value of A then Ax = λx (∑αiQim
i=1 )x = λIx = λ(∑Qim

i=1 )x 
 ∑(λ − αi)Qix = 0m

i=0                    (3.7) 
Since Qi ’s are disjoint, we can find at least one x ≠ 0 among the non-zero vectors for which 

(3.7) is linearly independent. Hence, it follows that λ = αi for some i. These arguments show that 
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the set of αi ’s equals the set of eigen values of A. By suitably changing the order of terms, we 

have A = ∑ ωiQi3i=1 . 

Since the expression for Pi is unique in terms of A, we have Qi = Pi for i ϵ {0,1,2,3}. Hence the 

decompositions (3.5) and (3.6) are unique. 

III. 𝑘-SPECTRAL CHARACTERIZATIONS OF K-IDEMPOTENT MATRICES  

A k-eigen value of a k-idempotent matrix is found and an equivalent condition for  normality of 

a k-idempotent matrix is also determined in this section.  

Theorem  

Let A be a k-idempotent matrix. Then the k-eigen values of a are 0,1 and  -1.  

Proof  Ax = λKx          (3.10) KAx = λx               (3.11) 

Pre multiplying by KA, we have  

                      A3x = λKAx  
                      A3x = λ2x              using (3.10) 
 Pre multiplying by , we have  

                     Ax = λ2Ax                                                                   

                     λKx = λ3Kx                   [using (3.10)]  

                    (λ − λ3)Kx = 0 

Since Kx ≠ 0, we have λ = 0,1, −1.      

Example  

The 〈1,4〉〈2,3〉-eigen values of example 3.2.2 are 1,1,-1,-1.  

Theorem  

If a matrix A ∈ ℂn×n is -idempotent then σk(A) ⊆ {0,1, −1}. Moreover, there exist unique 

disjoint oblique projectors Qj for j ∈ {0,1, −1} such that  KA = Q1 − Q−1           (3.12) I = Q0 + Q1 + Q−1                    (3.13) 

Proof  

By (3.2) and theorem 3.3.1, it is clear that σk(A) = σ(KA) ⊆ {0,1, −1}.  
We define Qj’s by the following formula  Qj = ∏ KA− iIj − in

i=0,1,−1i≠j
for j = 0,1, −1 

Then Q0 = I − A3  ∶  Q1 = 12 (A3 + KA)    ∶   Q−1 = 12 (A3 − KA)   
In the case that j ∉ σ(KA) for j ∈ {0,1, −1}, we have Qj = 0. It can be proved that the non-zero Qj’s so obtained are unique disjoint oblique projectors such that satisfying the decompositions 

(3.12) and (3.13) analogous to the proof of theorem 3.2.3.  
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Example  

Consider the 〈1,4〉〈2,3〉-idempotent matrix A. The oblique projectors of KA are found to be  

Q0=( 
     12 0    0 0    0− 12 00     

0 − 120     000    0   12) 
  Q1 = (  

  12 00 1+√320 12 −10      0  1212 01−√320 0 12)  
 Q−1 = ( 

  0 00 1−√3200 10      0  0− 12 01+√320 00) 
     

It can be easily verified that the above projectors are disjoint and satisfy the decompositions 

(3.12)and (3.13).  

IV. CONCLUSION 

Further it is proved that 𝑘-idempotent matrices are {3}-group periodic. A set of necessary and 

sufficient conditions for a linear combinations 𝐶 = 𝑐1𝐴 + 𝑐2𝐵 of two commutative idempotent 

matrices 𝐴 and 𝐵 to be 𝑘-idempotent, is listed analogous to theorem. Then it is generalized to the 

problem of characterizing all situations in which the linear combination 𝐶 = 𝑐1𝐴 + 𝑐2𝐵 (where 𝐴 

is an idempotent matrix and 𝐵 is a tripotent matrix) to be 𝑘-idempotent, is thoroughly studied 

analogous.  

Various generalized inverses of a 𝑘-idempotent matrix are studied and the corresponding 

inverses for the elements in group 𝐺 = {𝐴, 𝐴2
, 𝐴3

, 𝐾𝐴, 𝐴𝐾, 𝐾𝐴3
} are determined. A condition for 

the Moore Penrose inverse of a 𝑘-idempotent matrix to be 𝑘-idempotent is derived. A column 

and row inverse of a 𝑘-idempotent matrix is found and then it is shown that the group inverse of 

a 𝑘-idempotent matrix 𝐴 is 𝐴2
. A commuting pseudo inverse of the corresponding elements in 

group 𝐺 is also found. The 𝑘-idempotency of EP matrices is analyzed in this chapter. An 

equivalent condition for a 𝑘-idempotent matrix to be EP is also determined. 
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