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ABSTRACT 

Conversational text-to-speech (TTS) aims to synthesize speech with proper prosody of reply based on the historical 

conversation. However, it is still a challenge to comprehensively model the conversation, and a majority of conversational 

TTS systems only focus on extracting global information and omit local prosody features, which contain important fine-

grained information like keywords and emphasis. More- over, it is insufficient to only consider the textual features, and acoustic 

features also contain various prosody information. Hence, we propose M
2
-CTTS, an end- to-end multi-scale multi-modal 

conversational text-to- speech system, aiming to comprehensively utilize historical conversation and enhance prosodic 

expression. More specifically, we design a textual context module and an acoustic context module with both coarse-grained 

and fine- grained modeling. Experimental re- sults demonstrate that our model mixed with fine-grained context information 

and additionally considering acoustic features achieves better prosody performance and naturalnessin CMOS tests. 

Index Terms— speech synthesis, conversational TTS, prosody, multi-grained, multi-modal 

 
1. INTRODUCTION 

In the past few years, deep learning based text-to-speech 

(TTS) models have developed rapidly and they [1, 2] can 

produce natural speech with narrator-like high quality that 

matches human levels. Moreover, by training on large-scale 

emotional speech corpus, many expressive speech synthe- 

sis systems have been proposed and they [3, 4, 5, 6, 7] can 

produce speech with rich prosody and expressiveness. Con- 

versational TTS, as a more complex technique in the field 

of Human-Computer Interaction (HCI), aims to synthesize 

speech with suitable prosody according to history conver- 

sation. Those expressive speech synthesis methods cannot 

perform well if they are directly applied to conversational 
 

 

TTS [8], because conversational TTS relies heavily on his- 

torical conversation and it is crucial to model such dialogue 

information.Some conversation modeling   methods   have   

been pro posed recently. Guo et al. [9] proposed a context 

encoder to reinforce the utterance-level information of 

history context from textual aspect, and an extra auxiliary 

encoder is used to extract useful statistical text features like 

semantic and syntactic features. Cong et al. [10] introduced 

an extra acoustic context encoder to acquire the acoustic 

embedding from previous speech. Besides, Li et al. [8] 

proposed a graph-based multi-modal context modeling 

method to model inter-speaker and intra-speaker 

influence in conversations.However, these researches in 

conversational TTS only fo- cus on predicting prosody 

embedding from the global level within single modality and 

neglect to consider local features from different aspects, 

which are insufficient to reflect actual human behaviors [11] 

like keywords emphasis or changes of prosody. Hence, we 

adopt a hierarchical modeling method, including utterance-

level and phoneme-level modules from both textual and 

acoustic aspects.   Moreover, some meth- ods [9, 10] simply 

use concatenation operation and GRU for modeling, which 

has a limited ability to describe relation- ship between 

current and past utterances. Hence, we enhance the 

connection by multi-head cross-modal attention mecha- 

nism in our work. Besides, we further apply next predictor 

module for better prosody similarity and use Style-Adaptive 

Layer Normalization (SALN) [5] to infuse prosody informa- 

tion. We conduct experiments on conversational speech cor- 

pus DailyTalk [12] and the results show that our method out- 

performs other methods in terms of CMOS test. Especially, 

fine-grained expressiveness has been greatly strengthened. 

Our major contributions are listed in the following. (1) 

we not only extract global features but also make use of local 

information to enhance expressiveness, and (2) we develop a 

method that uses both textual and acoustic conversation in- 

formation, and (3) we better utilize prosody embeddings by 

applying SALN and prosody predictor module. 

The rest of the paper is organized as follows. Section 2 
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Fig. 1. Overview of our proposed M
2
-CTTS model. 

 

introduces our proposed conversational TTS system in detail. 

Section 3 shows our experiment results and discussions. The 

paper is concluded in Section 4. 

 
2. M

2
-CTTS MODEL 

The entire model architecture of M
2
-CTTS is depicted in 

Fig. 1. M
2
-CTTS is based on FastSpeech2 [2] which consists 

of an encoder, a decoder and a variance adaptor. In order 

to capture both textual and acoustic information from the 

history conversation, we design a Textual Context Module 

(TCM) and an Acoustic Context Module (ACM). Further- 

more, in order to consider hierarchical history context at 

the same time, we design a Text Utterance-Level Module 

(TUM) and a Text Phoneme-Level Module (TPM) in TCM 

and design a Wave Utterance-Level Module (WUM) and a 

Wave Phoneme-Level Module (WPM) in ACM. Moreover, 

we use Conditional Decoder and Prosody Predictor Module 

(PPM) to enhance the expressiveness of the generated speech. 

Specifically, we adopt Style-Adaptive Layer Normalization 

(SALN) [5] in decoder as Conditional Decoder to increase 
the expressiveness and better utilize the history context. 

 
2.1. Multi-scale Dialogue Modeling 

conversation embedding worked poorly and led to average 

prosody. Hence, we additionally combine coarse-grained 

with fine-grained conversation modeling and adopt multi- 

head attention to acquire comprehensive history information. 

We denote the conversation history at t time stamp as: 

Conversation = {At−c, Bt−c+1, . . . , At−1, Bt}     (1) 

where c is a memory capacity parameter that determines how 

many turns are taken into consideration between two speakers 

A and B. 

Coarse-grained Context Modeling. In terms of coarse- 

grained context modeling, we utilize Text Utterance-Level 

Module (TUM) and Wave Utterance-Level Module (WUM) 

to acquire global context information. 

For TUM, we follow and modify the module proposed 

in [9] to model the textual utterance-level information, which 

consists of a Sentence BERT [13] based textual utterance- 

level feature extractor and a Coarse-grained Textual Encoder. 

Because Sentence BERT can capture semantic information, 
we adopt it to extract history sentences embeddings E

T
 

t—c:t− 1 

from Conversation with last c turns dialogue and current 

utterance embedding E
T
 . For Coarse-grained Textual En- 

coder, a GRU layer is used to encode the history embeddings 

Although global information like emotions or intentions al- t−c:t−1 first for considering cumulative past conversational 

 

lows the model to understand the conversation, detailed in- 

formation like keywords or emphasis that include strong 

or implicit meanings should also be highlighted. Besides, 

information. Then we concatenate the final hidden states of 

GRU with the current utterance embedding E
T
 and feed them 

into a linear layer with additional attention mechanism to cal- 

culate the weighted global textual context embedding H
T
 as 

inconsistent or mixed style within utterances may lead to un- 

natural prosody. We also empirically found that fixed-length 

shown in Fig. 1. 

For WUM, we adopt a similar architecture to extract the 
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global acoustic context embedding H
A
, except for the feature 

extractor and we do not use the speech of the current utterance 

Bt. Instead of the conventional methods that use spectral- 

based features and a reference encoder or Global Style To- 

ken (GST) [3], we adopt a Wav2vec 2.0 [14] fine-tuned in 

the downstream Speech Emotion Recognition (SER) task to 

extract the acoustic utterance-level prosody information Ei
A 

directly from raw audio. This method brings twofold bene- 

fits. The pretrained model can capture more comprehensive 

acoustic features in contrast to spectral-based features which 

lack phase information and contain less prosodic data than 

raw audio. In addition, using pretrained model can mitigate 

the training difficulty of complex models and have robust per- 

formance. 
Fine-grained   Context   Modeling   Although   global 

keywords or phrases from the textual aspect are considered. 

Acoustic Context Modeling. As shown in Fig. 1, Acous- 

tic Context Module includes WPM and WUM. WPM con- 

sists of a feature extractor and a Fine-grained Acoustic En- 

coder. Different from using mel spectrogram as acoustic in- 

put, we adopt Wave2vec 2.0 [14] to extract the hidden feature 

sequences from raw audios. The other processes are similar 

to TPM described above. Therefore, the local expression or 

emphasis from the acoustic perspective is noticed. 

2.3. Constraint of Prosody 

Similar to [10], we additionally utilize a Prosody Predictor 

Module (PPM) to predict prosody embedding of current ut- 

terance E
A
 from multi-modal global context embeddings 

H
T
 and H

A
. As shown in Eq. 2, an additional MSE loss 

information like emotions or intentions allows the model to 
t t

 

understand the conversation, detailed information like 

keywords or emphasis that include strong or implicit 

meanings should also be highlighted. 
Considering a real-world conversation, people will react to 

is adopted to constrain coarse-grained context modules to 

predict the prosody expression of current utterance based on 

the history. 

Ê
A  = P P M (H

T
, H

A
),  Loss = ||ÊA

, E
A

|| (2) 

specific words or phrases that others say in communication. where ÊA   stands for predicted  prosody  embedding.   E
A

  is 
Therefore, in order to simulate these situations, we develop  

t
 

t
 

the ground-true prosody embedding extracted by fine-tuned 
a Text Phoneme-level Module (TPM) and a Wave Phoneme- 

Level Module (WPM) to model fine-grained history informa- 

tion. 

In TPM and WPM, hidden feature sequence Pi from i-

th sentence or utterance is acquired from BERT [15] and 

Wav2vec 2.0 [14] respectively. Multi-head cross-modal atten- 

tion mechanism is then utilized to identify essential phrases 

or frames which have an important impact on context under- 

standing and expressiveness. A more detailed introduction is 

below. 

2.2. Multi-modal Context Modeling 

In addition to semantic and syntactic features, paralinguistic 

information like acoustic prosodic cues also play an important 

role in context understanding, since people speak in different 

tones even in the same contents or situations. Thus, modeling 

both modalities is significant. 

Textual Context Modeling. As shown in Fig. 1, Textual 

Context Module contains TPM and TUM. TPM consists of 

a feature extractor and a Fine-grained Textual Encoder. We 

adopt BERT [15] to acquire the hidden feature sequences Pi 

from i-th sentence and aggregate all last c dialogues into a 

long sequence. After that, we add the speaker ID to reserve 

speaker identity and we also use sinusoidal positions to repre- 

sent the conversation orders. In terms of Fine-grained Textual 

Encoder, 1D convolutional layer is first adopted for contextu- 

alization. The output of TTS encoder is then used as the query 

for a multi-head cross-attention module with historical fine- 

grained representation sequences as both key and value. The 

resulting weighted context representation will be added back 

Wav2vec model. It should be noted that the prosody predictor 

module and loss computation are only used during training. 

3. EXPERIMENTS 

3.1. Experimental Setup 

We use public English corpus DailyTalk [16] to conduct our 

experiments. The DailyTalk dataset is derived from DailyDi- 

alog dataset [16] and it contains 2,541 dialogues performed 

by one male and one female speaker. Every dialogue in Dai- 

lyTalk has more than five turns. For convenience, they are 

split into 23,773 audio clips by dialogue turns and they con- 

tain 20 hours in total. We leave 128 dialogues for validation 

set and others for training set. In our experiments, all utter- 

ances are down-sampled to 22050Hz and are used to extract 

80 dimensional mel spectrogram. 

We use FastSpeech2 as our TTS backbone and we adopt 

unsupervised duration modeling [17] rather than using su- 

pervised duration model with external aligner, such as Mon- 

treal Forced Aligner [18], because external aligners have risk 

of out-of-distribution problem and soft alignment has more 

flexibility for expressive performance. We use the pretrained 

HiFi-GAN [19] model as our vocoder to convert the 80 di- 

mensional mel spectro-grams to 22050Hz audio files. Our 

conversational TTS models are all trained for 400K steps with 

a batch size of 16 on GeForceRTX 3090. The training hyper- 

parameters such as optimizers are based on the original con- 

figuration. 

For textual feature extractors, we use pretrained Sentence 

BERT 
1
 in TUM, and use the original BERT in TPM. For 

to the output of TTS encoder with the residual design. The    

structure of TUM is depicted in Sec. 2.1. Thus, the important 
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   Table 1. The comparison methods and the MOS results.   
 

Methods TUM WUM TPM WPM MOS Score 

M0 reconstructed from ground-truth 4.38 ± 0.06 

M1  

✓ 

✓ 

✓ 

✓ 

✓ ✓ 

✓ ✓  

 

 

 

✓ 

✓ 

 
✓ ✓  

3.64 ± 0.07 

M2 3.71 ± 0.06 

M3 3.65 ± 0.07 

M4 3.64 ± 0.07 

M5 3.70 ± 0.07 

M6 3.73 ± 0.06 

  M7  3.74 ± 0.07 

 
acoustic feature extractors, we adopt pretrained Wav2vec 2.0 
2 fine-tuned on IEMOCAP [20] emotional training data in 

WUM, and use original Wav2vec 2.0 in WPM. 

To study the performance of our proposed method, we use 

the comparison methods M0 to M7 for evaluation. Detailed 

combinations are in Table 1. M1 is the FastSpeech2 base- 

line model and M2 to M7 all adopt Conditional Decoder and 

prosody Predictor Module to enhance the expressiveness. 

 

3.2. Evaluation 

We conduct comparison mean opinion score (CMOS) test to 

evaluate the performance of each designed pair (A, B) in test 

set. We randomly select 20 synthesized utterances at i-th 

turns Ui and four ground-truth history contexts with both text 

and speech Ui−4:i−1 for reference to compare the naturalness 

and expressiveness. Especially, participants need to judge 

whether the prosody is more expressive and more suitable 

with the history dialogue, and rate on a scale from -3 (Com- 

pletely A model better) to 3 (Completely B model better) with 

1-point discrete increments according to the criteria. The ab- 

solute value shows the degree. 

The CMOS results are shown in Table 2. We find that 

using TUM or WUM to model dialogue history in utterance- 

level from textual or acoustic aspects respectively can both 

improve the expressiveness a lot. We also find that combining 

fine-grained features in acoustic aspect has significant bene- 

fits in synthesizing speech with rich prosody. However, we 

do not find similar conclusion in textual aspect. We suppose 

that local acoustic features contain more implicit information, 

since people utter the same word or phrase with a variety of 

prosody and emotion in different situations. Comparison “M4 

vs. M5” considering multi-scale information but from differ- 

ent aspects also confirms that acoustic features is more effec- 

tive. Furthermore, we investigate the performance of adopting 

both textual and acoustic modalities. CMOS score of “M2 vs. 

M6” indicates that combining two aspects in utterance level 

can just slightly enhance the performance. We then visualize 

the attention and find that both TUM and WUM focus on the 

same utterances in most cases, especially the latest turn. As 

Table 2. The results of the CMOS tests. CMOS describes the 

preference degree between A and B (denote as A vs. B). The 

Preference is calculated according to the CMOS score.   
 

  

CMOS 

  Preference(%)  

Left Neutral Right 

M1 vs. M2 0.25 18.9 46.1 35.0 

M1 vs. M3 0.19 14.4 53.9 31.7 

M2 vs. M4 0.03 25.6 45.5 28.9 

M3 vs. M5 0.21 17.2 46.1 36.7 

M4 vs. M5 0.19 18.9 45.5 35.6 

M2 vs. M6 0.05 25.6 43.8 30.6 

M2 vs. M7 0.34 17.8 38.3 43.9 

M6 vs. M7 0.32 16.7 41.1 42.2 

 
a consequence, the extracted information has high degree of 

similarity. The test cases “M2 vs. M7” and “M6 vs. M7” 
show that our method is superior to other methods [9, 10] 

respectively proposed in earlier research. M2-CTTS has bet- 

ter understanding of the history conversation and greatly en- 

hances the fine-grained prosodic expression. 

We also conduct a five-scale mean opinion score (MOS) 

test to evaluate the quality and naturalness of the speech. The 

greater the score, the better the quality. Results in Table 1 

show that modeling the prosody information from differ- 

ent aspects can relieve the problem of generating average 

prosody. We also notice that despite our method containing 

many modules, it does not necessarily impair the quality and 

naturalness thanks to the prior knowledge from pretrained 

models. Examples of synthesized speech can be found on the 

project page 
3
. 

 
4. CONCLUSION 

 

In this paper, we propose an end-to-end multi-scale multi- 

modal conversational speech synthesis system (M
2
-CTTS) 

that models multi-grained context information extracted from 

both acoustic and textual features. Experimental results show 

that considering both acoustic and textual modalities can 

enhance the prosody and naturalness of synthesized speech. 

Besides, combining coarse-grained features with fine-grained 

features will further improve expressiveness. especially the 

fine-grained prosody extracted from acoustic features. For 

future work, we will investigate the fine-grained modeling of 

conversational TTS with controllability. 
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