Title: ANALYSIS OF AREA-EFFICIENT & LOW-POWER SHIFT REGISTER USING PULSED LATCHES

Volume 06, Issue 07, Pages: 670 – 678.
Paper Authors

N.SWARNA REKHA, B.VIJAYA KUMAR

Krishnaveni Engineering College for Women, Kesanupalli, AP, India

COPY RIGHT

2017 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copyright is authenticated to Paper Authors

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code
ANALYSIS OF AREA-EFFICIENT & LOW-POWER SHIFT REGISTER USING PULSED LATCHES

1N. SWARNA REKHA, 2B. VIJAYA KUMAR

1M.Tech Student, Krishnaveni Engineering College for Women, Kesanupalli, AP, India
2Assistant Professor, Krishnaveni Engineering College for Women, Kesanupalli, AP, India

n.swarnarekha1994@gmail.com, bonthu.vijay457@gmail.com

Abstract: This paper proposes a low-power and territory productive move enroll utilizing computerized beat hooks. The region and power utilization are lessened by supplanting flip-flops with beat locks. This technique takes care of the planning issue between beat locks using different non-cover deferred beat clock motions rather than the regular single beat clock flag. The move enlist utilizes few the beat clock motions by gathering the locks to a few sub shifter registers and utilizing extra impermanent stockpiling hooks. A 256-piece move enroll utilizing beat hooks was manufactured utilizing a 0.18µm CMOS process with VDD = 1.8V. The center region is 6600µm2. The power utilization is 1.2mW at a 100 MHz clock recurrence. The proposed move enlist spares 37% range and 44% power contrasted with the traditional move enlist with flip-flops. In computerized circuits, a move enroll is a course of flip lemon, having a similar clock, in which the yield of each flip-slump is associated with the data‖ contribution of the following flip-tumble in the chain, bringing about a circuit that movements by one position the ―bit array‖ put away in it, moving in the information introduce at its information and moving out the last piece in the exhibit, at each change of the clock input. All the more for the most part, a move enlist might be multidimensional, with the end goal that it's ―data in‖ and arrange yields are themselves bit clusters: this is actualized just by running a few move registers of a similar piece length in parallel. Keywords: Area-Efficient, Flip-Flop, Pulsed Clock, Pulsed Latch, Shift Register.

I. INTRODUCTION A move enroll is the essential building obstruct in a VLSI circuit. Move registers are ordinarily utilized as a part of numerous applications, for example, computerized channels, correspondence recipients, and picture preparing ICs. As of late, as the span of the picture information keeps on expanding because of the popularity for top notch picture information, the word length of the shifter enroll increments to process vast picture information in picture preparing ICs. A picture extraction and vector era VLSI chip utilizes a 4Kbit move enlist. A 10-bit 208 channel yield LCD section driver IC utilizes a 2K-bit move enlist. A 16-megapixel CMOS picture sensor utilizes a 45K-piece move enlist. As the word length of the shifter enroll builds, the region and power utilization of the move enlist end up noticeably imperative plan contemplations. The design of a move enroll is very basic. A
N-bit move enlist is made out of arrangement associated N information flip-flops. The speed of the flip-flop is less imperative than the range and power utilization in light of the fact that there is no circuit between flip-flips in the move enroll. The littlest flip-tumble is appropriate for the move enlist to diminish the territory and power utilization. As of late, beat hooks have supplanted flip-tumbles in numerous applications, in light of the fact that a beat lock is significantly littler than a flip-flounder. Yet, the beat lock can't be utilized as a part of a move enlist because of the planning issue between beat hooks. This paper proposes a low-power and region productive move enroll utilizing beat locks. The shift register solves the timing problem using multiple non-overlap delayed pulsed clock signals instead of the conventional single pulsed clock signal. The shift register uses a small number of the pulsed clock signals by grouping the latches to several sub shifter registers and using additional temporary storage latches.

![Diagram of Latch Types](image)

Fig. 1. (a) Master-slave flip-flop (b) Pulsed latch

current is expelled and therefore the probability of reliability issues occurring rises. We are moving from laptops to tablets and even smaller computing digital systems. With this profound trend continuing and without a match trending in battery life expectancy, the more low power issues will have to be addressed. The current trends will eventually mandate low power design automation on a very large scale to match the trends of power consumption of today’s and future integrated chips. Power consumption of Very Large Scale Integrated design is given by generalized relation, $P = CV^2f$. Since power is proportional to the square of the voltage as per the relation, voltage scaling is the most prominent way to reduce power dissipation. However, voltage scaling is results in threshold voltage scaling which bows to the exponential increase in leakage power. Though several contributions have been made to the art of single edge triggered flip-flops, a need evidently occurs for a design that further improves the performance of single edge triggered flip flops patterns. The architecture of a shift register is quite simple. An N-bit shift register is composed of series connected N data flipflops. The speed of the flip-flop is less important than the area and power consumption because there is no circuit between flip-flips in the shift register. The smallest flip-flop is suitable for the shift register to reduce the area and power consumption. Recently, pulsed latches have replaced flipflops in many applications, because a pulsed latch is much smaller than a flip-flop. But the pulsed latch cannot be used in a shift register due to the timing problem between pulsed latches. This paper proposes a low-power and area-efficient shift register using pulsed latches. The shift register solves the timing problem using multiple non-overlap delayed pulsed clock signals instead of the conventional single
pulsed clock signal. The shift register uses a small number of the pulsed clock signals by grouping the latches to several sub shifter registers and using additional temporary storage latches. Shift registers can have both parallel and serial inputs and outputs. These are often configured as _serial-in, parallel-out_ (SIPO) or as _parallel-in, serial-out_ (PISO). There are also types that have both serial and parallel input and types with serial and parallel output. There are also _bidirectional_ shift registers which allow shifting in both directions: L→R or R→L. The serial input and last output of a shift register can also be connected to create a _circular shift register_ previous work often measured energy consumption using a limited set of data patterns with the clock switching every cycle. But real designs have a wide variation in clock and data activity across different TE instances. For example, low power microprocessors make extensive use of clock gating resulting in many TEs whose energy consumption is dominated by input data transitions rather than clock transitions. Other TEs, in contrast, have negligible data input activity but are clocked every cycle. Shift registers, like counters, are a form of sequential logic. Sequential logic, unlike combinational logic is not only affected by the present inputs, but also, by the prior history.

II. SHIFT REGISTERS

A shift register is the basic building block in a VLSI circuit. Shift registers are commonly used in many applications, such as digital filters, communication receivers and image processing ICs. Recently, as the size of the image data continues to increase due to the high demand for high quality image data, the word length of the shifter register increases to process large image data in image processing ICs. An image extraction and vector generation VLSI chip uses a 4K-bit shift register. A 10-bit 208 channel output LCD column driver IC uses a 2K-bit shift register. A 16-megapixel CMOS image sensor uses a 45K-bit shift register. As the word length of the shifter register increases, the area and power consumption of the shift register become important design considerations. The smallest flip-flop is suitable for the shift register to reduce the area and power consumption. Recently, pulsed latches have replaced flip flops in many applications, because a pulsed latch is much smaller than a flip-flop. But the pulsed latch cannot be used in a shift register due to the timing problem between pulsed latches.

This paper proposes a low-power and area-efficient shift register using pulsed latches. The shift register solves the timing problem using multiple non-overlap delayed pulsed clock signals instead of the conventional single pulsed clock signal. The shift register uses a small number of the pulsed clock signals by grouping the latches to several sub shifter registers and using additional...
temporary storage latches. Shift registers can have both parallel and serial inputs and outputs. These are often configured as ‘serial-in, parallel-out’ (SIPO) or as ‘parallel-in, serial-out’ (PISO). There are also types that have both serial and parallel input and types with serial and parallel output. There are also ‘bidirectional’ shift registers which allow shifting in both directions: L→R or R→L. The serial input and last output of a shift register can also be connected to create a ‘circular shift register’. Previous work often measured energy consumption using a limited set of data patterns with the clock switching every cycle. But real designs have a wide variation in clock and data activity across different TE instances. For example, low power microprocessors make extensive use of clock gating resulting in many TEs whose energy consumption is dominated by input data transitions rather than clock transitions. Other TEs, in contrast, have negligible data input activity but are clocked every cycle. Shift registers, like counters, are a form of sequential logic. Sequential logic, unlike combinational logic is not only affected by the present inputs, but also, by the prior history.

In other words, sequential logic remembers past events. Pulsed latch structures employ an edge-triggered pulse generator to provide a short transparency window. Compared to master–slave flip-flops, pulsed latches have the advantages of requiring only one latch stage per clock cycle and of allowing time-borrowing across cycle boundaries. The major disadvantages of pulsed latch structures are the increased susceptibility to timing hazards and the energy dissipation of the local clock pulse generators. Pulse generators can be shared among a few latch cells to reduce energy, if care is taken that the pulse shape does not degrade due to wire delay, signal coupling and noise. We measured designs both with individual pulse generators and with pulse generators shared among four latch bits, in which case we divide the pulse generator energy among the
four latch instances. HLFF [see Fig. 3(e)] operates as a pulsed transparent latch and is regarded as one of the fastest known flip-flop designs HLSFF [see Fig. 3(f)] is HLFF with a shared inverter chain. SSAPL [see Fig. 3(g)] is a pulsed version of SSALA with individual pulse generators, while SSASPL [see Fig. 3(h)] has a shared pulse generator. Note that the two series transistors in SSAPL are replaced by a single transistor in SSASPL. Traditionally, the power consumption of flip-flop and latch designs has been measured using an unrated clock and a small number of input activation patterns. Instead, we adopt a more accurate methodology in which all possible states (e.g., clock value, input value, output value) of the TE are enumerated and the energy consumption of each state transition is measured. Some designs perform extremely well in certain regimes, but extremely poorly in others. For example, in test2 the low power SSAFF design uses eight times less energy than the HLFF structure, but in test 3 it uses seven times more energy. Another good example of a TE specialized for an operating regime is CPNLA. This latch design is by far the best choice for test 3, but by far the worst choice in all other cases. Finally, CCPPCFF [see Fig. 3(i)] is a conditional clocking flip-flop based on the design presented in, which in turn is an improvement. The goal of this design is to reduce energy when the input data does not change by gating the clock within the flip-flop.

III. LITERATURE REVIEW

A. Progress with Physically and Logically Reversible Superconducting Digital Circuits

Jie Ren and Vasili K. Semenov had proposed this. We continue to develop a new Superconductor Flux Logic (SFL) family based on nSQUID gates with fundamentally low energy dissipation and the ability to operate in irreversible and reversible modes. Prospective computers utilizing the new gates can keep conventional logically irreversible architectures. In this case the energy dissipation is limited by fundamental thermodynamic laws and could be as low as a few s per logic operation. Highly exotic and less practical logically and physically reversible circuit architectures are more attractive for us because they enable a reduction of the specific energy dissipation well below the thermodynamic threshold. The reversible option is of interest to us because we can then experimentally demonstrate that all technical mechanisms of the energy dissipation could be cut below the fundamental thermodynamic limit. In other words, we like to set the energy dissipation record for all conventional digital technologies that (if measured in) is about one million times below the best figures achieved in commercially available semiconductor circuits. Besides, we believe that diving below the thermodynamic threshold would have impressive scientific and philosophical impacts. In this paper we introduce a new timing belt clocking scheme and present new circuits. While we still work with test circuits, some of them contain two 8- stage shift registers, one with
direct and the other with inverted outputs. The energy dissipation per squid gate per bit measured at 4 K temperature is already below the thermodynamic threshold. We are confident that we passed through the critical phase of the paper and we simply need more time to make more sophisticated circuits. The extremely low energy dissipation converts our circuits into a natural candidate to support circuitry for any sensors operating at mille-Kelvin temperatures.

B. Reversible AC Drive Systems Based on Parallel AC–AC DC-Link Converters

Cursino Brandão Jacobina had proposed this. In this paper, two reversible single-phase-to-three-phase ac drive systems are proposed. They are composed of an induction motor fed by two parallel single-phase-to-three-phase dc-link converters without isolation transformers. Suitable modeling and control strategy of the systems based on odq approach, including the unbalanced case, are developed. The proposed topologies permit reducing the harmonic distortion and presents fault tolerance characteristics. Even if the number of switches is increased, the total energy loss of the proposed systems can be lower than that of a conventional one. It is shown that the reduction of the circulating current is an important objective for the system design. A single-phase-to-three-phase dc-link converter generalization has been proposed as well. Simulated and experimental results are presented.

1. Testing of Quantum Cellular Automata
Mehdi B. Tahoori, Jing Huang, Mariam Momenzadeh, and Fabrizio Lombardi had proposed this. There has been considerable research on quantum dot cellular automata (QCA) as a new computing scheme in the nano-scale regimes. The basic logic element of this technology is the majority vote. In this paper, a detailed simulation-based characterization of QCA defects and study of their effects at logic level are presented. Testing of these QCA devices at logic level is investigated and compared with conventional CMOS-based designs. Unique testing features of designs based on this technology are presented and interesting properties have been identified. A testing technique is presented; it requires only a constant number of test vectors to achieve 100% fault coverage with respect to the fault list of the original design. A design-for-test scheme is also presented, which results in the generation of a reduced test set at 100% fault coverage.

2. Constructing Online Testable Circuits using Reversible Logic
Sk. Noor Mahammad and Kamakoti Veezhinathan had proposed this. With the advent of nanometer technology, circuits are more prone to transient faults that can occur during its operation of the different types of transient faults reported in the literature, the single event upset (SEU) is prominent. Traditional techniques such as triple-modular redundancy (TMR) consume large area and power. Reversible logic has been gaining interest in the recent past due to its less heat dissipation characteristics. This
paper proposes the following: a novel universal reversible logic gate (URG) and a set of basic sequential elements that could be used for building reversible sequential circuits, with 25% less garbage than the best reported in the literature; (2) a reversible gate that can mimic the functionality of a lookup table (LUT) that can be used to construct a reversible field-programmable gate array (FPGA); (3) automatic conversion of any given reversible circuit into an online testable circuit that can detect online any single-bit errors, including soft errors in the logic blocks, using theoretically proved minimum garbage, which is significantly lesser than the best reported in the literature. Conservative logic is called reversible conservative logic when there is a one-to-one mapping between the inputs and the outputs vectors along with the property that there is equal number of 1s in the outputs as in the inputs. Conservative logic circuits are not reversible, if one-to-one mapping between the inputs and the outputs vectors is not preserved. Conservative logic can be reversible in nature or may not be reversible in nature. Reversibility is the property of circuits in which there is one-to-one mapping between the inputs and the output vectors that is for each input vector there is a unique output vector and vice-versa. QCA is one of the emerging nanotechnologies in which it is possible to implement reversible logic gates. QCA makes it possible to achieve circuit densities and clock frequencies beyond the limits of existing CMOS technology. In QCA, computing logic states of 1 and 0 are represented by the position of the electrons inside the QCA cell. Thus, when the bit is flipped from 1 to 0 there is no actual discharging of the capacitor as in conventional CMOS. Hence, QCA does not have to dissipate all its signal energy during transition. Further, propagation of the polarization from one cell to another is because of interaction of the electrons in adjacent QCA cells. As there is no movement of electrons from one QCA cell to the other, there is no current flow. Therefore, QCA has significant advantage compared to CMOS technology in terms of power dissipation. Due to high error rates in nanoscale manufacturing, QCA and other nanotechnologies target reducing device error rates. IV. RESULTS The proposed 256-bit shift register with \(K = 4 \) was fabricated using a 0.18µm CMOS process. Table I lists the features of the shift register chip. The chip occupies 6600µm\(^2\) and consumes 1.2 mW at \(V_{DD} = 1.8\)V and \(f_{CLK} = 100\)MHz. Fig.4 shows a microphotograph of a chip. Figs. 5(a) and 5(b) show the measured waveforms of the shift-register at \(f_{CLK} = 100\)MHz and \(f_{CLK} = 10\)MHz, respectively. In the simulations, the shift register with \(K = 4 \) operates up to \(f_{CLK} = 840\)MHz, but in the measurements, the clock frequency was 100 MHz due to the frequency limitation of the experimental equipment. Fig. 5(a) represents a clock signal of 100 MHz, an input signal (IN), two output signals from the first sub shift resister (Q1 and Q2). Fig. 5(b) shows a clock signal of 10 MHz, an input signal (IN), eight output signals from the first and second sub shift resisters (Q1– 8), the last
output signal of the 256-bit shift register (Q256).

V. CONCLUSION

VI. REFERENCES

