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ABSTRACT  

The research also investigates the effect of several tuning factors on the variable selection 

procedure, such as the regularization strength in LASSO and the quantile level in LAD 

regression. Furthermore, the approaches' susceptibility to multicollinearity and missing data 

is explored. In this study, we show that LASSO and Least Absolute Deviation (LAD) 

regression are equally useful for variable selection in survival analysis. By forcing certain 

coefficients to zero, LASSO creates sparse models, whereas LAD regression offers 

robustness against outliers and is hence well-suited to datasets with potentially noisy 

observations. It is important to consider the peculiarities of the dataset and the researcher's 

interest in interpretability when deciding which approach to use. In sum, this research adds to 

the body of knowledge on survival analysis by shedding light on how LASSO and LAD 

regression might be used for variable selection. In areas where time-to-event data analysis is 

crucial, researchers and practitioners may use these results to improve the accuracy and 

interpretability of their survival models. 

KEYWORDS: Variable Selection, Frailty and Marginal Models, Survival Analysis, LAD 

regression, LASSO creates sparse models. 

INTRODUCTION 

Survival analysis relies heavily on careful variable selection. In actual clinical practice, a 

large number of confounders may be included. Data scientists often include several predictors 

in the early stages of model development. A more parsimonious model is preferable in all 

cases since it improves model prediction and interpretation. Consequently, in the presence of 

a high number of predictors, identifying important variables plays key roles in model 

development and is quite difficult. In high-dimensional statistical modeling, variable 

selection is crucial. For linear regression models, several authors have presented different 

variable selection criteria and approaches. Due to the complex nature of the data, the study of 
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variable selection in survival analysis has attracted a lot of interest in recent years. 

In statistics, there is a subclass of survival models known as Cox's Proportional Hazards 

models. Time to an event is the dependent variable in survival models, which also take into 

account other possible factors. Each covariate's influence on the hazard rate is multiplicative 

in a proportional hazards model, rather than additive. The Cox proportional hazards model 

takes for granted the independence of subject survival times. However, when the data are 

correlated, it is possible that this assumption is not met. In this case, the independence 

assumption among individuals is broken; hence the widely used Cox model cannot be used. 

The frailty model and the marginal model are two extensions of the Cox regression model for 

the study of multivariate failure time data. It is planned to go through how to choose variables 

for marginal and frailty models in survival analysis in this section. Real-world examples are 

used to back up the numerical findings. 

HARD Threshold Penalty 

Fan noticed the punishment function for the penalized least-squares estimator 

p(|θ|) = |θ|I(|θ| ≤ λ) + λ/2I(|θ| > λ) leads to the hard-thresholding rule 

θ^  = zI(|z| > λ) 

This penalty function does not excessively punish the case when | θ | is really big. Fan 

recommended the following severe punishment for crossing a threshold: 

pλ(|θ|) = λ2 — (|θ| — λ)2I(|θ| < λ) With the clipped L1-penalty function pλ(|θ|) = λ min(|θ|, λ) 

The solution is a mixture of soft and hard thresholding rule θ^ = sgn(z)(|z| — λ)+I(|z| ≤ 1.5λ) 

+ zI(|z| > 1.5λ) 

Least Absolute Shrinkage and Selection Operator (LASSO) 

Assume we have (xi,yi) data, where xi=(xi1,..., xip)T are predictor variables and yi are the 

answers, for some integers i=1, 2,..., N. We assume either independence of observations or 

conditional independence of yis given xijs, as in the standard regression setup. For the sake of 

argument, let's say the xij are all the same:  
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Here t ≥ 0 is a tuning parameter. For all t, the solution for  is ^ = y. For a detailed study 

refer to Tibshirani (1996). 

Generalized Cross Validation (GCV) estimate 

The generalized Cross Validation estimation of  is the minimizer of V() 

 

where A() is the n × n influence matrix, which satisfies 

  

The GCV estimates the  which minimizes the predictive mean square error R() defined by 

 

fn,  (t), t  [0,1] is also a Bayes estimate of f(t) if f has a certain partly incorrect zero-mean 

Gaussan prior. 

Cox’s Proportional Hazard Model 

Let  Rank the reported occurrences of failure. Let x(0), x(1),..., x(N) be the 

variables associated with the N successes, and let (j) represent the label for the item that fails 

at t0. Let's call the danger you took before time t0 "Rj.: 

 

The formula for the Cox proportional hazards model is, 

 ….(3) 
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parameters and h0(t), which represent the baseline hazard function. The probability described 

in eq. (2) gets more likely the earlier it is discussed. 

  

where H0(.) is the cumulative hazard function at the first state. For a parametric baseline 

hazard function, h0(,. ), the associated penalized log-likelihood function is 

 (4) 

The maximum penalized likelihood estimator is found by optimizing eq. (4) with respect to 

(θ, β). 

Pseudo Likelihood 

The joint probability distribution of a set of random variables is approximated by the concept 

of pseudo likelihood. An approximation to the likelihood function of a collection of observed 

data may be obtained, which can be used to either provide explicit estimates of model 

parameters or to simplify the estimation issue computationally. 

Given a set of dependencies E between random variables, where Xi, Xj E denotes Xi is 

conditionally independent on Xj given Xi's neighbors, the pseudo likelihood of X = (x1, 

x2,..., xn) is the product of the probabilities of each of the random variables in X. 

 

The vector of variables denoted by X, and the vector of values denoted by x. Each element of 

the vector X has a corresponding value in the vector x, as shown by the statement X = x. The 

chance that the vector of variables X is equal to the vector x is represented by the equation 

Pr(X = x). Given that state variables may be used to characterize many circumstances, the 

probability of a given state, Pr(X = x), can be expressed as a percentage of all possible states, 

given the values of the state variables. The above equation may be used to calculate a related 

metric called the Pseudo-log-likelihood. Thus 
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The pseudo-likelihood of an assignment to Xi may often be computed more efficiently than 

the likelihood, especially when the latter may require marginalization over a large number of 

variables, making it useful as an approximation for inference about a Markov or Bayesian 

network. 

Error in predictions and model fit 

If (x) is a prediction technique developed using the current data and x is a random covariate, 

then the prediction error is defined as 

 

where the forecast is made simply in light of the latest data point (X,Y). There is a way to 

break down the prediction error: 

 

Stochastic mistakes are the root cause of the first part. The second part stems from a 

fundamental model not being properly implemented. This factor is indicated by the symbol () 

and is known as the model error. Cox's proportional hazards regression model (4.3) 

  

It shall be assumed that h0 (t) 1 in the simulation examples that follow. So, according to a 

rough algebraic estimate, 

 

For the Cox frailty model with h0(t) ≡ 1, 

  

When comparing the efficacy of two methods, we may eliminate the fragility-causing 
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component E(u-1) by calculating their Relative Model Errors (RME), which is just the ratio 

of their respective model errors. Therefore, we shall define the model error as 

 

in accordance with either the Cox or the frailty model. 

Instance of actual data  

The Frailty Model (i) 

The Government Hospital in Karaikal town, Government of Puducherry, is used to test the 

suggested frailty model, which is based on the work of Morris et al. (1994). Here's a detailed 

breakdown of what's included in this dataset: 

 

Three binary indices of health state, x5, x6, and x7, range from greatest health to worst 

health. Morris et al.'s (1994) proposed model is 

  

Where h0 (t) is the baseline hazard function utilizing gamma fragility and the Lin (1993) 

technique we explained before. Three parametric and one nonparametric baseline hazard 

models are used to fit the Cox model to this data set. Other variables are binary; therefore 

only x2 is standardized. The SCAD, L1, and harsh penalty of the penalized partial likelihood 

method are applied to this dataset. The GCV chooses the thresholding parameters of 0.02 for 

the SCAD, 0.01 for the LASSO, and 0.09 for the HARD. In addition, the AIC and BIC for 

the optimal subset variable selection are calculated. Parameter estimates have been calculated 

using the method and software proposed by Lin (MULCOX, 1990)*, Lin (MULCOX2, 
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1993**).  

Marginal Model (Case II) 

The National Eye Institute's Diabetic Retinopathy research (1981) aimed to determine 

whether or not laser photocoagulation might effectively postpone blindness in people with 

diabetic retinopathy.  

The Vinayaka Mission's Medical College and Hospital in rural Karaikal, Puducherry, 

undertook a study to determine the prevalence of cataract blindness in male and female 

patients in 2015.  

Diabetic retinopathy has been detected in this patient population. A total of 78 participants 

enrolled between January 2014 and December 2015.  

Data were obtained from Vinayaka Mission's Medical College and Hospital using a 

methodology similar to that of Huster et al. and Liang et al., in which one eye of each patient 

was randomly chosen for photocoagulation and the other eye was examined without 

treatment. 

 Patients were monitored to detect any instances of unilateral blindness. Some degree of 

interdependence between the patient's two eyes is to be expected. 

Think about the scenario described by the equation (4.10): Zik = (Z1ik, Z2ik, Z3ik) (i = 

1,...,126; k = 1,2) 

 

 

and Z3ik = Z1ik × Z2ik. 

COX REGRESSION MODEL VARIABLE SELECTION FOR LUNG CANCER AND 

LIVER DATA  

An essential stage in evaluating survival data to identify the variables affecting the time to an 

event of interest, such as death or disease progression, is variable selection for Cox's 

regression model utilizing data from lung cancer and the liver. To examine the association 
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between variables and survival times while taking censored data into account, survival 

analysts often turn to Cox's proportional hazards regression. This review will go into the 

methods used to identify important predictors in Cox's regression model, the significance of 

variable selection, and the unique difficulties and concerns presented by data on lung cancer 

and the liver. 

Cox's regression model relies heavily on careful variable selection to isolate the most 

important predictors of the outcome of interest and leave out any others that are unnecessary 

to the analysis.  

Overfitting occurs when a model has too many parameters that cannot be explained by the 

data at hand, which might introduce bias. However, if critical variables are left out of the 

analysis, we may be left with inaccurate estimates and less information to work with, which 

will impede our ability to determine what factors influence survival rates. Improving the 

analysis's predictive ability and scientific worth is possible via careful variable selection, 

which yields models that are both parsimonious and interpretable. 

Challenges and Considerations with Lung Cancer and Liver Data: 

1. there is the issue of censored data, which arises in survival analysis when some people 

reach the conclusion of the research without having experienced the event of interest. 

Censored observations are more common in data involving lung cancer and liver 

disease since some patients may be alive or in remission when the trial is over. It is 

crucial to handle censored data correctly during variable selection in order to prevent 

inaccurate model estimates and biased findings. 

2. high-dimensional data is becoming more common as a result of technological 

developments in data collecting. This is especially true for lung cancer and liver 

datasets, which often include a significant number of predictors. Problems arise in 

variable selection when working with high-dimensional data because of the increased 

computing complexity and the possibility of misleading connections. 

3. multicollinearity, which occurs when predictors are strongly associated with one 

another, makes it more difficult to isolate the effects of individual predictors and 

generates unstable coefficient estimates. 
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Best Practices for Variable Selection in Cox's Regression Model with Lung Cancer and 

Liver Data: 

1. First, the data must be preprocessed thoroughly to account for missing values, normalize 

variables, and deal with outliers that may compromise the efficiency of variable 

selection. 

2. To check how well the model does on new data and avoid overfitting, it's a good idea to 

use cross-validation methods like k-fold cross-validation. 

3. Regularization Strength Choosing the right regularization strength (penalty parameter) is 

critical in regularization methods like LASSO. To find the sweet spot between model 

complexity and prediction performance, cross-validation may be used. 

4. when working with high-dimensional datasets, it is important to include domain 

expertise and previous research results to help guide the selection of suitable predictors. 

Choosing which variables to include is a vital part of developing reliable and interpretable 

Cox's regression models for survival data including lung cancer and liver disease. Common 

approaches include univariate analysis, stepwise selection, regularization methods, 

information criteria, and RFE. Censored data, high-dimensional data, and multi collinearity 

are just a few of the obstacles that researchers must overcome to get somewhere useful. The 

variables affecting survival outcomes in studies of lung cancer and the liver may be better 

understood if researchers adhere to best practices for identifying important predictors, 

improving model performance, and gaining meaningful insights. 

 

CONCLUSION  

The numerical examples if the distributions are properly described, the marginal model is 

more effective than the frailty model. Results for new researchers working in the domain of 

variable selection in survival analysis are improved, and it is concluded that picking 

significant variables plays key roles in model construction and is particularly tough in the 

presence of a large number of predictors. When compared to stepwise selection, the LASSO 
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method for choosing variables in the Cox model seems to hold its own. It's more consistent 

than the incremental method while still producing understandable models. In order to ensure 

that the LASSO method's penalization scheme is uniformly applied to all regressors, it is 

necessary to standardize them beforehand. The LASSO selects about the right amount of zero 

coefficients, and it significantly beats stepwise selection. When compared to previous 

methodologies, the suggested methodology employed in this paper—which is based on data 

on lung cancer and liver cancer—performs very well. The study in this research has 

concentrated on fixed covariates; however time dependent covariate may be included with no 

more work. 
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