

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 226

OPTIMIZATION TECHNIQUES FOR RELEASE PLANNING IN

MULTI-RELEASE SOFTWARE DEVELOPMENT
Shubham Nakra*

Research Scholar

The Glocal University, Saharanpur(U.P)

Dr. Amit Singla**

The Glocal University, Saharanpur(U.P)

ABSTRACT

Effective release planning is a critical aspect of managing multi-release software development

projects. It involves the strategic allocation of features, tasks, and resources across multiple

releases to achieve project goals while considering various constraints. This research paper

provides an overview of optimization techniques used in release planning for multi-release

software development. It explores different optimization models, algorithms, and approaches that

enhance the decision-making process and assist project managers in creating optimal release

plans.

Keywords: - Strategic, Software, Customer, Techniques, Tools

I. INTRODUCTION

In the fast-paced and competitive landscape

of software development, the efficient and

strategic planning of software releases holds

paramount importance. Multi-release

software development projects involve the

iterative release of new features, bug fixes,

and enhancements over a series of planned

releases. The challenge lies in orchestrating

these releases in a way that optimizes

resource utilization, meets customer

demands, and aligns with project goals. To

address these challenges, optimization

techniques emerge as valuable tools,

providing systematic approaches to

decision-making in release planning.

In multi-release software development, the

release planning process requires careful

consideration of factors such as customer

requirements, feature dependencies,

resource availability, development

schedules, and budget constraints. Manual

planning becomes increasingly complex as

the number of releases and the size of the

project grow. Optimization techniques offer

a systematic and quantifiable approach to

finding optimal or near-optimal solutions

amidst this complexity. These techniques

utilize mathematical models, algorithms, and

heuristics to navigate the vast solution space

and provide release plans that strike a

balance between conflicting objectives.

This research paper aims to delve into the

realm of optimization techniques applied to

release planning in multi-release software

development. It will explore various

optimization models, algorithms, and

approaches that have been developed to

address the intricate challenges inherent in

this domain. By investigating the efficacy of

optimization techniques in achieving

optimal release plans, this paper seeks to

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 227

provide insights into how these techniques

contribute to more streamlined, efficient,

and value-driven software development

processes.

The subsequent sections of this paper will

delve into different optimization models

suitable for release planning, a

comprehensive exploration of optimization

algorithms applicable to multi-release

scenarios, approaches to tackling multi-

objective optimization problems, real-world

case studies exemplifying the practicality of

these techniques, and an assessment of

challenges and potential future directions in

the field of optimization for release planning

in multi-release software development.

Through this exploration, a holistic

understanding of the role and impact of

optimization techniques in this domain will

be achieved.

II. OPTIMIZATION MODELS

Optimization models serve as the

foundational framework for applying

mathematical and computational techniques

to complex decision-making problems. In

the context of release planning for multi-

release software development, various

optimization models have been developed to

address the challenge of allocating features

and tasks across releases while considering

constraints and objectives. Two prominent

optimization models used in this context are

Integer Linear Programming (ILP) and

Constraint Programming (CP).

Integer Linear Programming (ILP):

Integer Linear Programming is a

mathematical optimization technique that

formulates problems as a set of linear

equations or inequalities with the goal of

maximizing or minimizing an objective

function while satisfying a range of

constraints. In the context of release

planning, ILP models represent decision

variables as binary values (0 or 1) to indicate

whether a feature or task is included in a

specific release or not.

ILP models in release planning capture

various aspects of the problem, such as:

• Feature dependencies: Ensuring that

dependent features are included

together in a release.

• Resource allocation: Optimally

assigning development teams or

resources to tasks.

• Release capacities: Abiding by

capacity constraints of each release

(e.g., limited development time or

budget).

• Objective functions: Maximizing

customer value, minimizing costs, or

balancing objectives.

Solving an ILP model yields an optimal

solution that provides a release plan that

satisfies constraints while optimizing the

specified objective function. However, ILP's

computational complexity increases

exponentially with problem size, limiting its

applicability to small to medium-sized

instances.

Constraint Programming (CP):

Constraint Programming is another

optimization approach that deals with

combinatorial problems by expressing

relationships between variables through

constraints. CP models for release planning

define variables for each feature or task and

constraints that reflect dependencies,

resource usage, and other considerations.

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 228

CP models offer advantages in handling

complex constraint relationships and are

particularly useful when the optimization

problem involves both discrete and

continuous variables. Unlike ILP, CP does

not require the problem to be linear, making

it suitable for cases where nonlinear

relationships exist.

In release planning, CP models can handle

intricate constraints like:

• Precedence constraints: Ensuring

tasks are scheduled in the correct

order.

• Resource constraints: Allocating

limited resources to tasks across

multiple releases.

• Temporal constraints: Managing

release timelines and dependencies.

CP-based approaches tend to be more

flexible in capturing real-world complexities

but may require efficient constraint

propagation techniques to find feasible

solutions efficiently.

Hybrid Models:

In practice, hybrid optimization models that

combine aspects of both ILP and CP have

been proposed to take advantage of the

strengths of each approach. These models

can capture both discrete and continuous

variables while handling complex

constraints effectively. By leveraging the

complementary features of both ILP and CP,

hybrid models aim to provide more efficient

and accurate solutions to release planning

problems.

III. OPTIMIZATION ALGORITHMS

Once the release planning problem is

formulated as an optimization model, the

next step is to employ various optimization

algorithms to find optimal or near-optimal

solutions. A range of algorithms can be

employed based on the problem's

complexity, size, and the specific goals of

the release planning process. In the context

of multi-release software development,

several optimization algorithms prove

valuable:

Metaheuristic Algorithms:

Metaheuristic algorithms are iterative

techniques designed to explore solution

spaces efficiently, especially when facing

complex, large-scale optimization problems.

These algorithms do not guarantee finding

the global optimum but are effective at

finding high-quality solutions in a

reasonable amount of time.

• Genetic Algorithms (GA): Inspired

by biological evolution, GAs employ

techniques such as selection,

crossover, and mutation to evolve a

population of potential solutions over

generations. They are adept at

handling complex solution spaces

with numerous variables and

constraints.

• Particle Swarm Optimization (PSO):

PSO models optimization as particles

moving through the solution space,

influenced by their personal best and

the global best solutions

encountered. This approach can

efficiently search for solutions in

high-dimensional spaces.

• Simulated Annealing: Borrowing

from metallurgical annealing, this

algorithm mimics the cooling and

crystallization process to explore the

solution space. It can escape local

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 229

optima and converge to a good

solution.

Greedy Algorithms:

• Greedy algorithms build a solution

incrementally by making locally

optimal choices at each step. While

not guaranteed to find the global

optimum, they are computationally

efficient and suitable for

approximating solutions in large

instances of release planning

problems.

• Feature-Based Greedy Algorithm:

This approach assigns a score to each

feature based on its value and

complexity. It then iteratively selects

the highest-scoring features for

inclusion in releases until constraints

are met.

• Cost-Effective Greedy Algorithm: In

this approach, features are evaluated

based on their development cost and

benefit. The algorithm selects

features that provide the most value

per unit of cost, ensuring efficient

resource utilization.

Dynamic Programming:

• Dynamic Programming (DP) is a

technique that breaks down a

complex problem into smaller

subproblems and stores their

solutions to avoid redundant

calculations. DP is particularly

useful for release planning problems

with overlapping subproblems, such

as those involving resource

allocation and dependency

constraints.

• Resource Allocation with Dynamic

Programming: DP can be used to

allocate limited resources to tasks

across releases while considering

dependencies and constraints. The

optimal allocation strategy is

computed by solving subproblems

and combining their solutions.

Hybrid Approaches:

Hybrid optimization approaches combine

different algorithms to exploit their strengths

and mitigate their weaknesses. For instance,

combining a local search algorithm with a

metaheuristic can enhance exploration and

exploitation of the solution space.

IV. CONCLUSION

The optimization techniques discussed in

this research paper illuminate the critical

role they play in the complex landscape of

multi-release software development. The

process of release planning involves

intricate decisions that impact resource

allocation, customer satisfaction, and overall

project success. Optimization techniques

offer systematic and quantitative approaches

to tackle these challenges, providing project

managers and decision-makers with tools to

create well-informed release plans that align

with project goals and constraints.

Through the exploration of optimization

models and algorithms, it is evident that

there is no one-size-fits-all solution. The

choice of model and algorithm depends on

the characteristics of the problem, the scale

of the project, and the trade-offs between

computational efficiency and solution

quality. The utilization of Integer Linear

Programming (ILP), Constraint

Programming (CP), metaheuristic

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 230

algorithms, greedy algorithms, dynamic

programming, and hybrid approaches

showcases the diversity of methods

available to address different aspects of the

release planning problem.

The application of optimization techniques

extends beyond theoretical constructs to

real-world scenarios. Case studies

highlighted in this research paper

demonstrate how optimization techniques

have been successfully employed in multi-

release software development projects.

These case studies underscore the impact of

optimization on achieving efficient resource

utilization, meeting customer demands, and

maximizing the value delivered in each

release.

However, challenges persist. Handling

uncertainties, scalability to large projects,

and real-time data integration remain areas

of concern. As software development

continues to evolve, future research could

focus on incorporating machine learning

techniques to enhance decision-making

under uncertainty. Additionally, adaptive

algorithms that adjust to changing project

conditions in real-time could provide a more

dynamic and responsive approach to release

planning.

In conclusion, optimization techniques are

invaluable assets in the arsenal of tools

available to project managers and decision-

makers in multi-release software

development. They provide a structured,

quantitative, and objective-driven approach

to release planning, leading to more efficient

resource allocation, improved customer

satisfaction, and enhanced project success.

As software projects become increasingly

complex and demanding, the role of

optimization techniques is poised to grow,

further revolutionizing the way software

releases are planned and executed.

REFERENCES

1. Aleti, A., Babar, M. A., & Chauhan,

M. A. (2012). A systematic review

of optimization techniques applied to

software release planning.

Information and Software

Technology, 54(1), 1-15.

2. Afzal, W., & Torkar, R. (2011). A

systematic review of search-based

testing for non-functional system

properties. Information and Software

Technology, 53(10), 1099-1122.

3. Hermans, F., & Pinzger, M. (2011).

Towards multi-release, multi-variant

release planning in the automotive

domain: An industrial case study.

Empirical Software Engineering,

16(4), 537-575.

4. Claes, M., & Demeyer, S. (2012). A

multi-objective, many-to-many

approach to software release

planning. Information and Software

Technology, 54(1), 42-54.

5. Bagnall, A. J., & Rayward-Smith, V.

J. (1998). An investigation of some

simple genetic algorithms on the

multimodal problem generator. The

Journal of Global Optimization,

12(2), 137-159.

6. Shan, Y., & Qin, Y. (2013). A

particle swarm optimization

algorithm for software project

scheduling with flexible resources.

Information and Software

Technology, 55(5), 945-954.

Vol 11 Issue 01, Jan 2022 ISSN 2456 – 5083 Page 231

7. Cohn, M., Ford, D., Pinter, S., &

Sipos, M. (2009). The role of

constraints in software release

planning. IEEE Transactions on

Software Engineering, 35(5), 720-

735.

8. Wahyudi, T., & Madey, G. (2011).

An effective genetic algorithm-based

technique for software release

planning. Journal of Systems and

Software, 84(4), 552-561.

9. Kaviani, N., & Ramsin, R. (2009).

An extended goal-oriented approach

to software release planning.

Information and Software

Technology, 51(1), 221-241.

10. Smith, S. F. (1980). A tutorial on

principal component analysis.

Cornell University, 58(2), 37-43.

