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Abstract: This study addresses challenges in remote 

sensing object detection, proposing the RAST-YOLO 

algorithm that integrates Region Attention (RA) with 

Swin Transformer as the backbone. The method 

effectively handles issues like varied target scales, 

intricate backgrounds, and closely spaced small 

objects. Incorporating the C3D module optimizes the 

multi-scale problem for small objects, enhancing 

detection accuracy. Evaluations on DIOR and TGRS-

HRRSD datasets demonstrate RAST-YOLO's state-

of-the-art performance, surpassing baseline networks. 

Notably, the model achieves a substantial mean 

average precision (mAP) improvement on both 

datasets, showcasing its effectiveness and superiority. 

Furthermore, the lightweight structure ensures real-

time detection, making RAST-YOLO a practical 

choice for efficient and robust remote sensing object 

detection. The study extends the analysis to other 

prominent models like YOLOv5s, YOLOv3, 

FasterRCNN, RetinaNet, YOLOv5x6, and YOLOv8. 

Notably, YOLOv5x6 stands out with an impressive 

0.80% mAP or higher, suggesting its potential for 

further enhancing detection performance in remote 

sensing applications. 

Index terms - Remote sensing images, object 

detection, attention mechanism, swin transformer, 

multiscale features. 

1. INTRODUCTION 

Object detection in remote sensing images plays a 

pivotal role in interpreting aerial and satellite data, 

finding applications in resource exploration [1], 

intelligent navigation [2], environmental monitoring 

[3], and target tracking [4]. With the rapid 

development of aerospace and unmanned aerial 

vehicles (UAVs), the availability of high-resolution 

datasets for remote sensing image processing has 

increased significantly. However, this domain 

presents unique challenges such as small data scale, 

similar appearances of objects in different categories, 

significant disparities in appearance within the same 

category, uneven distribution of targets, and complex 

backgrounds. 

For instance, in datasets with aircraft, the 

backgrounds may vary between ocean and land, and 

the size differences among aircraft can be substantial, 

posing challenges for detection. Sparse and dense 

target distributions, coupled with similar appearances 
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among different categories, make direct application 

of traditional object detection methods for natural 

scenes ineffective in remote sensing scenarios. 

Traditional algorithms involve multi-step processes, 

including feature extraction, transformation, and 

classification, often relying on methods like SIFT [5], 

HOG [6], and classifiers such as SVM [8] and 

random forest [9]. However, these methods lack 

robustness and generalization capabilities, 

particularly for deep semantic information extraction, 

motivating the exploration of more advanced 

techniques. 

The demand for improved performance has led to the 

rise of deep learning methods, which overcome 

limitations associated with manual feature selection. 

These methods leverage neural networks to 

automatically learn hierarchical features, providing 

enhanced robustness and generalization capabilities 

[10]. In this context, the introduction of deep learning 

algorithms for remote sensing object detection 

becomes imperative. 

One of the most important aspects of earth surveying 

is object detection through remote sensing. The target 

detection algorithm struggles to produce acceptable 

detection results in remote sensing images in natural 

settings.  

The RAST-YOLO (You only look once with Regin 

Attention and Swin Transformer) algorithm is 

presented in this work as a solution to the challenges 

associated with remote sensing object detection, 

including large scale differences between targets, 

intricate background patterns, and closely spaced 

small targets.  

2. LITERATURE SURVEY 

[1] This paper introduces a real-time localization 

method for underwater moving object detection and 

tracking, specifically designed for offshore defense 

applications. Utilizing direct-current resistivity 

survey techniques in acoustically noisy conditions, 

the method addresses the need for rapid target 

localization to enable real-time tracking. The 

proposed approach employs grid-based template 

matching with distinct features: 1) utilization of 

measurement data sets from two separate detection 

lines, 2) template matching based on correlation, 3) 

precalculation of templates through numerical 

modeling, and 4) implementation of real-time 

localization processing with efficient calculations. 

Experimental validation involved stationary target 

positions in a water tank, comparing templates 

against both numerical and physical modeling data. 

Subsequently, real-time localization experiments 

were conducted for a moving target in the water tank, 

employing a 3-Hz refresh rate. The results 

demonstrated continuous tracking of estimated 

positions aligning with actual target positions, 

affirming the method's efficacy in real-time 

scenarios. This novel real-time localization method 

presents a promising contribution to offshore defense 

and surveillance, enhancing the capabilities of 

underwater object detection and tracking. The 

integration of direct-current resistivity survey 

techniques with grid-based template matching offers 

a robust solution for addressing challenges in 

acoustically noisy environments, showcasing 

potential applications in defense and surveillance 

operations. 
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[2] This article presents a pioneering approach in 

construction automation, leveraging robotic solutions 

empowered by artificial intelligence and mechatronic 

advancements. Traditional construction inspections, 

often performed by human inspectors onsite, prove to 

be time-consuming, labor-intensive, and subjective. 

In response, this study proposes a robotic system 

equipped with perception sensors and intelligent 

algorithms to remotely identify construction 

materials, detect component installations and defects, 

and generate comprehensive status and location 

reports. Unlike prevalent deep learning-based object 

detection relying heavily on training data, the 

proposed approach adopts a data and information-

driven methodology. Incorporating offline training 

data, sensor data, and Building Information Model 

(BIM) information, the system achieves BIM-based 

object coverage navigation, BIM-based false 

detection filtering, and employs a precise maneuver 

technique to enhance real-time automated task 

execution by robots. Utilizing BIM for mobile robot 

navigation and retrieving location information of 

building components, the system allows users to 

select specific components for inspection. The mobile 

robot autonomously navigates to target components 

using the BIM-generated navigation map, and an 

object detector identifies building components and 

materials, subsequently generating an inspection 

report. Validation through laboratory and onsite 

experiments underscores the effectiveness of the 

proposed system, signaling a transformative leap 

towards efficient, safe, and data-driven construction 

automation. 

[3] In the realm of marine environmental monitoring 

and exploration, the escalating volume of digital 

image data demands computational support for timely 

analysis. However, the application of modern 

techniques, particularly deep learning, is hindered by 

the scarcity of annotated training data. This article 

introduces Unsupervised Knowledge Transfer 

(UnKnoT), a novel method designed to enhance the 

efficiency of limited training data. To circumvent the 

labor-intensive process of annotation, UnKnoT 

employs a technique termed "scale transfer" 

alongside augmented data techniques, enabling the 

reuse of existing training data for object detection 

within new image datasets. The study introduces four 

fully annotated marine image datasets, each acquired 

in the same geographical area but with variations in 

gear and distance to the sea floor. Evaluation of 

UnKnoT on these datasets demonstrates significant 

improvement in object detection performance 

compared to scenarios without knowledge transfer. 

The method proves particularly effective in cases 

relevant to marine environmental monitoring and 

exploration. The findings not only showcase the 

efficacy of UnKnoT in optimizing object detection 

but also advocate for an image acquisition and 

annotation scheme that facilitates the application of 

modern machine learning methods in the challenging 

domain of marine environmental monitoring and 

exploration. 

[4] This article presents a novel method for target 

detection and tracking in environments equipped with 

multiple radar systems, offering extended coverage 

and enhanced trajectory detection probability and 

localization accuracy. The challenges addressed 

include the presence of multiple extended or weak 

targets and the potential degradation of performance 

in regions with high clutter density. The proposed 
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algorithm comprises three key stages. In the initial 

stage, past measurements are leveraged to construct a 

spatiotemporal clutter map for each radar system, 

assigning weights to measurements to gauge their 

significance. The second stage employs a track-

before-detect algorithm based on a weighted 3-D 

Hough transform to generate target tracklets. Finally, 

in the third stage, a low-complexity tracklet 

association method, utilizing a lion reproduction 

model, is applied to associate tracklets corresponding 

to the same target. The effectiveness of the proposed 

approach is demonstrated through three experiments. 

The first utilizes synthetic data, the second utilizes 

actual data from a radar network featuring two 

homogeneous air surveillance radars, and the third 

involves actual data from a radar network equipped 

with four diverse marine surveillance radars. Results 

indicate that the proposed method outperforms 

alternative approaches, establishing its efficacy in 

addressing the complexities of multiple radar systems 

in cluttered environments. 

[5] This paper introduces a novel descriptor, termed 

Flip-Invariant SIFT (F-SIFT), addressing a limitation 

in the widely used Scale-Invariant Feature Transform 

(SIFT). While SIFT is effective in capturing local 

keypoints invariant to rotation, scale, and lighting 

changes, it lacks flip invariance. Real-world images 

often exhibit flip or flip-like transformations due to 

artificial flipping, varied capturing viewpoints, or 

symmetric object patterns. F-SIFT preserves the 

beneficial characteristics of SIFT while incorporating 

tolerance to flips. The F-SIFT approach begins by 

estimating the dominant curl of a local patch and 

geometrically normalizes the patch through flipping 

before computing the SIFT descriptor. The paper 

demonstrates the efficacy of F-SIFT across three 

tasks: large-scale video copy detection, object 

recognition, and object detection. For copy detection, 

a framework is proposed, intelligently indexing the 

flip properties of F-SIFT for efficient filtering and 

geometric checking. F-SIFT not only enhances 

detection accuracy compared to traditional SIFT but 

also achieves over 50% computational cost savings. 

In object recognition, F-SIFT showcases superior 

performance in handling flip transformations, 

outperforming seven other descriptors. Furthermore, 

in object detection, F-SIFT exhibits proficiency in 

describing symmetric objects, consistently improving 

results across various keypoint detectors compared to 

the original SIFT. This research presents F-SIFT as a 

valuable enhancement to SIFT, addressing flip 

invariance challenges and showcasing its utility in 

diverse computer vision tasks. 

3. METHODOLOGY 

i) Proposed Work: 

We introduce RAST-YOLO, an innovative algorithm 

designed for remote sensing object detection, 

overcoming challenges such as varied target scales, 

intricate backgrounds, and compactly arranged small-

size targets. Leveraging the Region Attention (RA) 

mechanism in conjunction with the Swin Transformer 

backbone enhances feature extraction by extending 

the information interaction range and leveraging 

background information. Additionally, the inclusion 

of the C3D module addresses the multi-scale problem 

in detecting small objects, optimizing the fusion of 

deep and shallow semantic information. To build our 

model on Colab, we incorporate YOLO versions 

(V5s, V3, V5x6, V8), FasterRCNN, and RetinaNet, 
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enabling a comprehensive exploration of detection 

techniques. Through extensive experiments on DIOR 

and TGRS-HRRSD datasets, our proposed system 

exhibits superior performance. Specifically, 

YOLOv5x6 demonstrates remarkable results, 

achieving a mean average precision (mAP) of 0.80% 

or above. This establishes the efficacy of our 

approach in advancing remote sensing object 

detection, showcasing its potential for real-world 

applications in various scenarios with complex 

backgrounds and diverse target characteristics. 

ii) System Architecture: 

The system architecture leverages Google Colab for 

its cloud-based computing capabilities. The dataset, 

comprising annotated images, undergoes data 

augmentation to enhance model generalization. The 

models implemented include YOLOv5s, RAST 

YOLO (utilizing CNN and YOLO backbone), 

YOLOv3, Faster R-CNN, RetinaNet, YOLOv5x6, 

and YOLOv8. In Colab, each model is constructed 

and trained on the augmented dataset. The training 

process involves optimizing weights based on model 

predictions. 

Performance evaluation utilizes key metrics such as 

precision, recall, and mean Average Precision (mAP). 

These metrics gauge the model's accuracy, 

completeness, and overall effectiveness in object 

detection. Precision measures the accuracy of 

positive predictions, recall assesses the model's 

ability to capture all relevant instances, while mAP 

provides a comprehensive evaluation of precision-

recall trade-offs across various confidence thresholds. 

The chosen models, trained on the augmented 

dataset, are assessed using these metrics to ensure 

robust object detection capabilities, making the 

architecture versatile for diverse image processing 

tasks. 

 

Fig 1 System Architecture 

iii) Dataset Collection: 

The DIOR dataset, publicly released by Northwestern 

Polytechnic University in 2019, comprises 23,463 

high-quality optical remote sensing images 

containing 192,472 instance objects across 20 

common categories. These categories include diverse 

objects such as airplanes, airports, baseball fields, and 

expressway toll stations. DIOR is characterized by an 

extensive range of object sizes, rich images, high 

inter-class similarity, intra-class diversity, and an 

uneven distribution of instances across categories. 

On the other hand, the TGRS-HRRSD dataset, 

released by the University of Chinese Academy of 

Sciences, consists of 21,761 images with 55,740 

instance objects sourced from Google Earth and 

Baidu maps. Featuring 13 categories like airplanes, 

basketball courts, and vehicles, TGRS-HRRSD 

maintains a balanced distribution of approximately 

4,000 instances per category. This dataset ensures a 



Vol 13 Issue 04, Apr 2024 ISSN 2456 – 5083 Page 156 

 
 
 
 
 

 
 

comprehensive representation of various object types 

with a focus on achieving category-wise balance, 

making it suitable for diverse applications in optical 

remote sensing object detection. 

In the image processing pipeline, the datasets can be 

read and images plotted for visualization, providing 

valuable insights into the objects and scenes 

encapsulated within these diverse datasets. 

iv) Image processing: 

Converting to Blob Object: The initial step involves 

transforming the input image into a blob object, a 

format suitable for neural network models. This 

process typically includes resizing, mean subtraction, 

and channel swapping to align the image data with 

the model's expectations. 

Defining the Class: The class definitions are crucial 

for labeling and categorizing objects within the 

image. Each object in the dataset corresponds to a 

specific class, defining the ground truth for training 

and evaluation. 

Declaring the Bounding Box: Bounding boxes are 

essential annotations that delineate the spatial extent 

of objects within an image. These boxes provide 

critical information for training object detection 

models to learn and predict the locations of objects 

accurately. 

Convert the Array to a Numpy Array: Converting the 

image data into a NumPy array is essential for 

efficient manipulation and processing. NumPy arrays 

offer a versatile structure for handling numerical data, 

facilitating subsequent operations in the image 

processing pipeline. 

Loading the Pre-trained Model: 

Reading the Network Layers: To employ a pre-

trained model, one must read its network layers, 

allowing access to the architecture's structure, 

parameters, and weights. This step is crucial for 

understanding the model's composition and preparing 

it for further customization. 

Extract the Output Layers: Identifying and extracting 

the output layers is essential for obtaining the 

predictions made by the model. These output layers 

contain the information necessary for object 

detection, enabling the retrieval of bounding box 

coordinates, class probabilities, and other relevant 

details. 

Image Processing: 

Appending the Image-Annotation File and Images: 

Combining the image data with its corresponding 

annotations is vital for training and evaluating the 

model. This step ensures that the model learns from 

the annotated ground truth, improving its ability to 

detect and classify objects accurately. 

Converting BGR to RGB: Converting the image from 

the BGR (Blue, Green, Red) color space to RGB is 

essential, aligning the image representation with 

standard practices and facilitating consistent 

processing across different models. 

Creating the Mask: Generating a mask involves 

creating binary images that highlight specific regions 
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of interest, aiding in tasks like segmentation or object 

localization within the image. 

Resizing the Image: Resizing the image to the 

required dimensions ensures compatibility with the 

model's input size, enabling seamless integration into 

the detection pipeline. This step is crucial for 

maintaining consistency between the training data 

and the model's expectations. 

v) Data Augmentation: 

Data augmentation is a crucial technique in 

improving the robustness and generalization of object 

detection models. Randomizing the image involves 

introducing variations to the image appearance, such 

as changes in brightness, contrast, or color saturation. 

This stochastic process helps the model adapt to 

diverse real-world scenarios, reducing overfitting to 

specific conditions present in the training set. 

Rotating the image is another augmentation strategy 

that enhances the model's ability to detect objects 

from different viewpoints. By applying random 

rotations within a specified range, the model learns to 

recognize objects from various orientations, making 

it more versatile in handling real-world images with 

different spatial configurations. 

Transforming the image involves geometric 

alterations like scaling, translation, and shearing. This 

augmentation technique introduces variations in 

object sizes, positions, and shapes, making the model 

robust to variations in scale and spatial arrangement. 

It is particularly useful for addressing scenarios 

where objects may appear at different distances or 

angles. 

Collectively, these data augmentation techniques 

enhance the diversity of the training dataset, enabling 

the model to generalize better to unseen data. This 

variety is crucial for preventing overfitting and 

improving the model's performance on real-world 

images with varying conditions. Implementing a 

combination of randomization, rotation, and 

transformation ensures that the object detection 

model becomes more adept at handling the inherent 

complexities and variations present in diverse optical 

remote sensing datasets like DIOR and TGRS-

HRRSD. 

vi) Algorithms: 

YOLOv5s Algorithm: 

Algorithm Definition: YOLOv5s (You Only Look 

Once version 5 small) is an object detection 

algorithm that employs a single neural network to 

predict bounding boxes and class probabilities 

directly from images. It utilizes a lightweight 

architecture for real-time processing. 

Project Usage: YOLOv5s is chosen for its balance 

between accuracy and speed, making it suitable for 

real-time applications in our project, where efficient 

object detection on optical remote sensing images is 

crucial. 

RAST YOLO Algorithm: 

Algorithm Definition: RAST YOLO combines a 

Region-based CNN (Convolutional Neural Network) 

backbone with the YOLO (You Only Look Once) 

architecture for object detection. This fusion 

enhances the model's feature extraction capabilities, 
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improving its accuracy in identifying objects in 

remote sensing images. 

Project Usage: RAST YOLO is employed to 

leverage both the advantages of region-based CNNs 

and YOLO, enhancing the model's performance in 

capturing intricate features and objects within the 

optical remote sensing datasets. 

YOLOv3 Algorithm: 

Algorithm Definition: YOLOv3 is an object detection 

algorithm that divides an image into a grid and 

predicts bounding boxes and class probabilities for 

each grid cell. It utilizes multiple detection scales for 

improved accuracy in detecting objects of varying 

sizes. 

Project Usage: YOLOv3 is selected for its strong 

performance in handling diverse object scales, 

making it suitable for detecting objects with varying 

sizes in the optical remote sensing datasets. 

Faster R-CNN Algorithm: 

Algorithm Definition: Faster R-CNN (Region-based 

Convolutional Neural Network) is a two-stage object 

detection algorithm that integrates a Region Proposal 

Network (RPN) to generate region proposals 

followed by bounding box refinement and 

classification. It excels in accuracy and localization 

precision. 

Project Usage: Faster R-CNN is employed for its 

high precision in object localization, making it 

suitable for detailed and accurate object detection in 

the optical remote sensing datasets. 

RetinaNet Algorithm: 

Algorithm Definition: RetinaNet is a one-stage object 

detection algorithm that introduces the Focal Loss to 

address class imbalance. It efficiently detects objects 

at multiple scales, ensuring robust performance 

across various object sizes. 

Project Usage: RetinaNet is chosen for its ability to 

handle class imbalance and effectively detect objects 

at different scales, contributing to improved accuracy 

in our optical remote sensing object detection project. 

YOLOv5x6 Algorithm: 

Algorithm Definition: YOLOv5x6 is an extended 

version of YOLOv5 that utilizes a larger model 

architecture, providing increased capacity for 

capturing complex features. It balances accuracy and 

speed, making it suitable for detailed and efficient 

object detection. 

Project Usage: YOLOv5x6 is selected to capitalize 

on its enhanced capacity, offering improved feature 

extraction capabilities for accurate detection of 

objects within the optical remote sensing datasets. 

YOLOv8 Algorithm: 

Algorithm Definition: YOLOv8 is an advanced 

version of the YOLO series, incorporating 

improvements in model architecture and training 

techniques. It focuses on optimizing detection 

accuracy while maintaining efficiency. 

Project Usage: YOLOv8 is implemented to harness 

the advancements in model architecture, aiming to 
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achieve heightened accuracy in object detection on 

optical remote sensing images within our project. 

4. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 

 

mAP: Mean Average Precision (MAP) is a ranking 

quality metric. It considers the number of relevant 

recommendations and their position in the list. MAP 

at K is calculated as an arithmetic mean of the 

Average Precision (AP) at K across all users or 

queries.  

 

Comparison Graphs for DIOR Dataset 

 

Fig 2 Precision, Recall, mAP Comparison Graphs for 

DIOR Dataset 

Comparison Graphs for TGRS Dataset 

 

Fig 3 Precision, Recall, mAP Comparison Graphs for 

TGRS Dataset 
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Fig 4 Home page 

 

Fig 5 Registration page 

 

Fig 6 Login page 

 

Fig 7 DIOR dataset detection 

 

Fig 8 Upload input image 

 

Fig 9 Predict result 

 

Fig 10 TGRS dataset detection 
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Fig 11 Upload another input image 

 

Fig 12 Final outcome for given input 

5. CONCLUSION 

In conclusion, the proposed framework, RAST-

YOLO, integrated with a Swin Transformer 

backbone, exhibits remarkable advancements in 

addressing challenges prevalent in remote sensing 

object detection. By introducing the RA mechanism, 

it effectively extracts both global background 

information and local target details, mitigating the 

impact of complex backgrounds. The C3D module 

further enhances the feature pyramid, improving 

accuracy in detecting multiscale and small targets. 

Leveraging the ACmix Plus Detector optimally 

utilizes global and local information, leading to more 

accurate category predictions and target localizations. 

In our implementation using Colab, various state-of-

the-art models, including YOLOv5s, YOLOv3, 

Faster R-CNN, RetinaNet, YOLOv5x6, and 

YOLOv8, were evaluated on challenging datasets. 

Significantly, YOLOv5x6 demonstrated superior 

performance, achieving a remarkable 0.80% mAP or 

higher. This outcome underscores the efficacy of 

advanced models like YOLOv5x6 in pushing the 

boundaries of remote sensing object detection. The 

findings not only showcase the success of the 

proposed RAST-YOLO framework but also highlight 

the potential for continued improvements in accuracy 

and robustness by exploring and implementing 

cutting-edge techniques in remote sensing image 

analysis. 

6. FUTURE SCOPE 

The future scope lies in advancing remote sensing 

object detection by exploring novel architectures and 

integrating emerging technologies. Further research 

can focus on refining model interpretability, 

optimizing computational efficiency, and adapting to 

dynamic environmental conditions. Embracing 

advancements like self-supervised learning and 

attention mechanisms can enhance model 

performance. Additionally, addressing real-time 

deployment challenges and extending the 

framework's applicability to diverse remote sensing 

domains, such as environmental monitoring and 

disaster response, will be key areas for future 

exploration and innovation. 

REFERENCES 



Vol 13 Issue 04, Apr 2024 ISSN 2456 – 5083 Page 162 

 
 
 
 
 

 
 

[1] H. Lee, H. K. Jung, S. H. Cho, Y. Kim, H. Rim, 

and S. K. Lee, ‘‘Realtime localization for underwater 

moving object using precalculated DC electric field 

template,’’ IEEE Trans. Geosci. Remote Sens., vol. 

56, no. 10, pp. 5813–5823, Oct. 2018.  

[2] I. Muhammad, K. Ying, M. Nithish, J. Xin, Z. 

Xinge, and C. C. Cheah, ‘‘Robot-assisted object 

detection for construction automation: Data and 

information-driven approach,’’ IEEE/ASME Trans. 

Mechatronics, vol. 26, no. 6, pp. 2845–2856, Dec. 

2021.  

[3] M. Zurowietz and T. W. Nattkemper, 

‘‘Unsupervised knowledge transfer for object 

detection in marine environmental monitoring and 

exploration,’’ IEEE Access, vol. 8, pp. 143558–

143568, 2020.  

[4] B. Yan, E. Paolini, L. Xu, and H. Lu, ‘‘A target 

detection and tracking method for multiple radar 

systems,’’ IEEE Trans. Geosci. Remote Sens., vol. 

60, 2022, Art. no. 5114721.  

[5] W.-L. Zhao and C.-W. Ngo, ‘‘Flip-invariant SIFT 

for copy and object detection,’’ IEEE Trans. Image 

Process., vol. 22, no. 3, pp. 980–991, Mar. 2013.  

[6] F. Gao, C. M. Wang, and C. H. Li, ‘‘A combined 

object detection method with application to 

pedestrian detection,’’ IEEE Access, vol. 8, pp. 

194457–194465, 2020.  

[7] Y. Tang, X. Wang, E. Dellandréa, and L. Chen, 

‘‘Weakly supervised learning of deformable part-

based models for object detection via region 

proposals,’’ IEEE Trans. Multimedia, vol. 19, no. 2, 

pp. 393–407, Feb. 2017.  

[8] B. Yang, Z. Jia, J. Yang, and N. K. Kasabov, 

‘‘Video snow removal based on self-adaptation snow 

detection and patch-based Gaussian mixture model,’’ 

IEEE Access, vol. 8, pp. 160188–160201, 2020.  

[9] B. V. Lad, M. F. Hashmi, and A. G. Keskar, 

‘‘Boundary preserved salient object detection using 

guided filter based hybridization approach of 

transformation and spatial domain analysis,’’ IEEE 

Access, vol. 10, pp. 67230–67246, 2022.  

[10] A. K. Nsaif, S. H. M. Ali, K. N. Jassim, A. K. 

Nseaf, R. Sulaiman, A. Al-Qaraghuli, O. Wahdan, 

and N. A. Nayan, ‘‘FRCNN-GNB: Cascade faster R-

CNN with Gabor filters and Naïve Bayes for 

enhanced eye detection,’’ IEEE Access, vol. 9, pp. 

15708–15719, 2021.  

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 

‘‘ImageNet classification with deep convolutional 

neural networks,’’ in Proc. Adv. Neural Inf. Process. 

Syst. (NIPS), 2012, pp. 1097–1105.  

[12] J. Redmon, S. Divvala, R. Girshick, and A. 

Farhadi, ‘‘You only look once: Unified, real-time 

object detection,’’ 2015, arXiv:1506.02640.  

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. 

Reed, C.-Y. Fu, and A. C. Berg, ‘‘SSD: Single shot 

multiBox detector,’’ Computer Vision ECCV 2016, 

B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. 

Cham, Switzerland: Springer, 2016, pp. 21–37.  

[14] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. 

Dollar, ‘‘Focal loss for dense object detection,’’ in 



Vol 13 Issue 04, Apr 2024 ISSN 2456 – 5083 Page 163 

 
 
 
 
 

 
 

Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 

2017, pp. 2999–3007.  

[15] H. Law and J. Deng, ‘‘CornerNet: Detecting 

objects as paired keypoints,’’ 2018, 

arXiv:1808.01244. 

 

 

 


