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ABSTRACT 

Monitoring the Earth's vital signs is essential to assess its condition and maintain the safety of 
living organisms. The current system utilizes the Multinomial Naïve Bayes algorithm for the 
image-based identification of critical Earth phenomena, such as seismic events, cyclones, 
floods, and wildfires. Although effective in its simplicity, the algorithm's presumption of 
feature independence may constrain its capacity to discern complex relationships within picture 
collections. These systems may find it challenging to adjust to the dynamic characteristics of 
the environment. In the realm of Earth observation, the Naive Bayes model is utilized to 
analyze data pertaining to seismic events, cyclones, floods, and wildfires. The fundamental 
premise of independence among characteristics in the Naive Bayes model may restrict its 
ability to effectively represent complicated interactions within the varied and dynamic datasets 
related to Earth's vital signs. The suggested system utilizes a Convolutional Neural Network 
(CNN) with the VGG16 architecture and the Random Forest algorithm, constituting an 
Ensemble Learning model. The VGG model, founded on CNN architecture, is employed to 
extract features from the input picture, preprocess, and train and test the data; subsequently, the 
Random Forest method is utilized to forecast accuracy and labels for the input data. The 
benefits of Earth's vital signs include real-time monitoring, predictive analytics, and enhanced 
accuracy. A multifunctional instrument for environmental monitoring and facilitating the 
establishment of early warning systems for swift reactions to ecological hazards and natural 
calamities.  
Keywords: Multinomial Naïve Bayes, Convolutional Neural Network, VGG16, Ensemble 
Learning Model.  

1. INTRODUCTION 

1.1 Overview 

Monitoring the Earth's vital signs, encompassing seismic activities, cyclones, floods, and 
wildfires, has become increasingly critical for disaster preparedness and response. Leveraging 
ensemble learning models in this context provides a comprehensive and sophisticated approach 
to understanding and predicting these dynamic phenomena. Ensemble learning involves the 
integration of predictions from multiple models, offering improved accuracy and robustness. 
In the case of earthquakes, ensemble models can analyze seismic data from various sources to 
enhance early detection and prediction capabilities. This is crucial for minimizing the impact 
on communities and infrastructure. For cyclones and hurricanes, ensemble learning excels in 
analyzing diverse climate and atmospheric data. By combining predictions from models 
specialized in different aspects of storm behavior, ensemble models provide more accurate 
forecasts of the storm's path, intensity, and potential impact areas. In flood monitoring, 
ensemble learning processes information from sources such as rainfall data, river gauges, and 
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topographical information. The diversity of models within the ensemble allows for a more 
nuanced understanding of complex hydrological processes, aiding in timely flood predictions 
and risk assessments. Ensemble learning is also valuable in monitoring and predicting 
wildfires. By analyzing data from satellites, weather patterns, and historical fire incidents, 
ensemble models can provide more accurate predictions of wildfire occurrence, spread, and 
potential areas at risk. The adaptability and real-time processing capabilities of ensemble 
learning models contribute to effective disaster management. These models can quickly adjust 
to new data, making them suitable for monitoring the evolving nature of natural disasters. 
Additionally, ensemble learning helps in assessing uncertainties associated with predictions, 
aiding decision-makers in making informed choices in the face of potential disasters. In 
summary, applying ensemble learning models to monitor Earth's vital signs related to 
earthquakes, cyclones, floods, and wildfires enhances prediction accuracy, adaptability, and 
resilience. This technological approach plays a crucial role in advancing our capability to 
respond effectively to natural disasters and mitigate their impact on both human and 
environmental systems. 

1.2 Problem Statement 

Monitoring the Earth's vital signs, including seismic activities, cyclones, floods, and wildfires, 
poses various challenges that can be addressed through the application of ensemble learning 
models. One major problem lies in the complexity of the data associated with these natural 
phenomena. Traditional methods struggle to capture the intricate patterns and correlations 
within large and diverse datasets generated by seismic sensors, meteorological instruments, 
and satellite imagery. Ensemble learning, with its ability to handle multiple models and diverse 
data sources, addresses this challenge by providing a more comprehensive analysis of the 
intricate interactions among Earth's vital signs.Another significant problem pertains to the 
dynamic and evolving nature of these natural disasters. Earthquakes, cyclones, floods, and 
wildfires exhibit varying patterns over time, and traditional models may struggle to adapt 
swiftly to changing conditions. Ensemble learning models, designed to be adaptable and 
responsive, offer a solution by continuously updating predictions based on real-time data. This 
enhances the accuracy of early warnings and predictions, crucial for effective disaster 
preparedness and response.Uncertainty in predictions is a persistent challenge in monitoring 
Earth's vital signs. Ensemble learning models, by providing estimates of uncertainty through 
the combination of multiple predictions, contribute to better risk assessment. Understanding 
the confidence levels associated with predictions is vital for decision-makers, allowing them to 
make informed choices regarding evacuation plans, resource allocation, and disaster response 
strategies.Data integration and feature selection pose additional challenges in the monitoring 
of Earth's vital signs. Ensemble learning addresses these issues by efficiently combining 
predictions from models that specialize in different aspects of the data. This not only aids in 
identifying crucial features contributing to each type of natural disaster but also ensures a more 
robust and accurate overall prediction.In summary, the application of ensemble learning models 
to monitor Earth's vital signs tackles key challenges related to data complexity, dynamic 
patterns, uncertainty, and efficient feature selection. By doing so, it significantly enhances our 
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ability to understand, predict, and respond to seismic activities, cyclones, floods, and wildfires, 
ultimately contributing to more effective disaster management and environmental stewardship. 

1.3  Research Motivation 

The motivation for researching the monitoring of Earth's vital signs, encompassing seismic 
activities, cyclones, floods, and wildfires, through the lens of ensemble learning models stems 
from the critical need for more accurate, adaptive, and timely predictions in the face of 
escalating environmental challenges. Traditional methods often struggle to capture the intricate 
patterns and interactions within the vast and dynamic datasets associated with these natural 
phenomena. Ensemble learning, with its ability to integrate diverse models and data sources, 
offers a promising solution to enhance the precision of predictions and improve our 
understanding of the complex relationships between different vital signs. 

The dynamic and evolving nature of natural disasters poses a significant motivation for 
exploring ensemble learning. Earthquakes, cyclones, floods, and wildfires exhibit temporal 
variations and can rapidly change in intensity and behavior. Ensemble learning models, 
designed for adaptability, can continuously learn from new data, providing real-time insights 
that are crucial for effective disaster preparedness and response. The motivation here lies in 
developing systems that can rapidly adjust predictions to changing conditions, ensuring that 
the monitoring frameworks remain robust and reliable over time. 

Furthermore, the motivation extends to addressing the inherent uncertainty associated with 
predictions in the realm of Earth's vital signs. Ensemble learning models inherently provide 
estimates of uncertainty by combining predictions from multiple models. This aspect is crucial 
for decision-makers, enabling them to assess the reliability of predictions and make informed 
choices regarding resource allocation, evacuation plans, and disaster response strategies. 

Data integration and efficient feature selection represent additional motivations for employing 
ensemble learning models. The ability of these models to handle diverse data sources and select 
relevant features ensures a more comprehensive understanding of the factors contributing to 
each type of natural disaster. This not only enhances the accuracy of predictions but also 
provides valuable insights into the underlying processes driving Earth's vital signs. 

In essence, the research motivation lies in the quest for more effective, adaptable, and reliable 
tools to monitor Earth's vital signs. Ensemble learning models present a promising avenue for 
advancing our capabilities in understanding, predicting, and responding to seismic activities, 
cyclones, floods, and wildfires. By addressing the complexities associated with these vital 
signs, researchers aim to contribute to the development of innovative solutions that can mitigate 
the impact of natural disasters and foster sustainable environmental practices. 

2 LITERATURE SURVEY 

Many works have been done to examine the use of LULC analysis on remotely sensed records. 
From 1986 to 2001 in Pallisa District, Uganda, Otukei and Blaschke [3] carried out land cover 
mapping and land cover assessing using DTs, SVMs and MLCs. They explored the use of 
knowledge mining to find the required classification bands and thresholds for decision. The 
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analysis assessed the efficiency of the classification models, claiming that land cover elements 
occur at an unpredictable pace. According to desired classes, a few image classification models 
are available for segmenting a multi-dimensional component space into homogenous regions 
and labelling segments. Parametric classifiers accept a normally distributed dataset and 
statistical parameters acquired properly from training data. The most broadly utilized 
parametric classifier is the maximum-likelihood classifier (MLC), which makes decision 
surfaces dependent on the mean and covariance of each class. MLC [11] was first applied to 
IRS LISS-III images between 2001 and 2011 and classified into eight classes. Additionally, the 
study used a unique methodological framework for post-classification adjustments. It 
considerably increased total classification accuracy from 67.84% to 82.75% in 2001 and from 
71.93% to 87.43% in 2011.  

Islam et al. [1] used Landsat TM and Landsat 8 OLI/TIRS images to examine land use changes 
in Chunati Wildlife Sanctuary (CWS) from 2005 to 2015. ArcGIS and ERDAS imagine were 
used for land use change assessment. To derive supervised land use categorization, the 
maximum likelihood classification technique was applied. It was discovered that around 256 
ha of the degraded forest area has increased over ten years (2005–2015), with an annual rate of 
change of 25.56%. Non-parametric classifiers do not accept a particular information 
appropriation to isolate a multi-dimensional feature space into classes. Most normally utilized 
non-parametric classifiers incorporate decision trees [4], support vector machines (SVM) [12] 
and expert systems. ML algorithms have been utilized according to pixel classifiers in remote 
sensing image analysis [6]. 

 Grippa et al. [13] describes a method for mapping urban land use at the street block level, 
emphasizing residential usage by utilizing very-high-resolution satellite images and derived 
land-cover maps as input. For the classification of street blocks, a random forest (RF) classifier 
is utilized, which achieves accuracies of 84% and 79% for five and six land-use classifications, 
respectively. RF classifier applied over urban communities Dakar and Ouagadougou, cover 
more than 1,000 km2 altogether, with a spatial resolution of 0.5 m.  

Jamali [7] compared and contrasted eight machine learning methods for image categorization 
in the northern region of Iran developed in the Waikato environment for knowledge analysis 
(WEKA) and R programming languages. Machine learning models [14]. 

3 PROPOSED SYSTEM 

3.1 Overview 

Here is the overview description of the leveraging vital signs classification for disaster 
management and environment risk assessment to safeguard ecosystem: 

⎯ Uploading Dataset: Users upload their dataset by clicking the "Upload Dataset" button. 
⎯ Upon clicking the button, a file dialog window appear, allowing users to navigate to 

and select the dataset folder containing subfolders for different classes of satellite 
images. Once the dataset is uploaded, a confirmation message  displayed on the GUI. 

⎯ Image Preprocessing: After the dataset is uploaded, the "Image preprocessing" button  
clicked to initiate image processing. The application utilize the VGG16 model to extract 
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features from the satellite images in the dataset. Extracted features be saved along with 
their corresponding labels. The dataset be split into training and testing sets for model 
training and evaluation. 

⎯ Training and Testing Existing Logistic Regression Model: Upon clicking the "Build & 
Train Logistic Regression Model" button, the application train a logistic regression 
model using the preprocessed dataset. The trained model be saved to a file for future 
use. The model's performance could be evaluated using metrics such as accuracy, 
precision, recall, and F1-score.  The evaluation results may be displayed on the GUI, 
along with a confusion matrix and classification report. 

⎯ Training and Testing Proposed RFC Model: Clicking the "Build & Train Ensemble 
Learning Model" button may trigger the training of a Random Forest Classifier (RFC) 
model. The RFC model might be trained using the preprocessed dataset. After training, 
the model's performance may be evaluated using similar metrics as for the logistic 
regression model. Evaluation results, including accuracy, precision, recall, F1-score, 
confusion matrix, and classification report, may be displayed on the GUI. 

⎯ Models Evaluation Graphs: Upon clicking the "Performance Evaluation" button, the 
application generate comparison graphs for evaluating the performance of both models. 

⎯ Graphs display metrics such as accuracy, precision, recall, and F1-score for each model. 
Users visually compare the performance of the logistic regression and RFC models 
through these graphs. 

⎯ Test Image Prediction Using Proposed RFC Model: Users upload a test image by 
clicking the "Upload test image" button. After selecting an image, the application use 
the trained RFC model to make predictions on the uploaded image. Predicted class 
labels be displayed on the image or in a separate window, indicating the land cover 
changes identified by the model. 
 

 
Figure 3.1: Block diagram of Proposed System. 

3.2 Random Forest Algorithm 

Random Forest is a popular machine learning algorithm that belongs to the supervised learning 
technique. It can be used for both Classification and Regression problems in ML. It is based 
on the concept of ensemble learning, which is a process of combining multiple classifiers to 
solve a complex problem and to improve the performance of the model. As the name suggests, 
"Random Forest is a classifier that contains a number of decision trees on various subsets of 
the given dataset and takes the average to improve the predictive accuracy of that dataset." 
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Instead of relying on one decision tree, the random forest takes the prediction from each tree 
and based on the majority votes of predictions, and it predicts the final output. The greater 
number of trees in the forest leads to higher accuracy and prevents the problem of overfitting. 

 

Fig. 3.2: Random Forest algorithm. 

Random Forest algorithm 

Step 1: In Random Forest n number of random records are taken from the data set having k 
number of records. 

Step 2: Individual decision trees are constructed for each sample. 

Step 3: Each decision tree will generate an output. 

Step 4: Final output is considered based on Majority Voting or Averaging for Classification and 
regression respectively. 

Important Features of Random Forest 

• Diversity- Not all attributes/variables/features are considered while making an 
individual tree, each tree is different. 

• Immune to the curse of dimensionality- Since each tree does not consider all the 
features, the feature space is reduced. 

• Parallelization-Each tree is created independently out of different data and attributes. 
This means that we can make full use of the CPU to build random forests. 

• Train-Test split- In a random forest we don’t have to segregate the data for train and 
test as there will always be 30% of the data which is not seen by the decision tree. 

• Stability- Stability arises because the result is based on majority voting/ averaging. 

Assumptions for Random Forest 

Since the random forest combines multiple trees to predict the class of the dataset, it is possible 
that some decision trees may predict the correct output, while others may not. But together, all 
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the trees predict the correct output. Therefore, below are two assumptions for a better Random 
Forest classifier: 

• There should be some actual values in the feature variable of the dataset so that the 
classifier can predict accurate results rather than a guessed result. 

• The predictions from each tree must have very low correlations. 

Below are some points that explain why we should use the Random Forest algorithm 

• It takes less training time as compared to other algorithms. 
• It predicts output with high accuracy, even for the large dataset it runs efficiently. 
• It can also maintain accuracy when a large proportion of data is missing. 

Types of Ensembles 

Before understanding the working of the random forest, we must look into the ensemble 
technique. Ensemble simply means combining multiple models. Thus, a collection of models 
is used to make predictions rather than an individual model. Ensemble uses two types of 
methods: 

Bagging– It creates a different training subset from sample training data with replacement & 
the final output is based on majority voting. For example, Random Forest. Bagging, also known 
as Bootstrap Aggregation is the ensemble technique used by random forest. Bagging chooses 
a random sample from the data set. Hence each model is generated from the samples (Bootstrap 
Samples) provided by the Original Data with replacement known as row sampling. This step 
of row sampling with replacement is called bootstrap. Now each model is trained independently 
which generates results. The final output is based on majority voting after combining the results 
of all models. This step which involves combining all the results and generating output based 
on majority voting is known as aggregation. 

 
Fig. 3.3: RF Classifier analysis. 

Boosting– It combines weak learners into strong learners by creating sequential models such 
that the final model has the highest accuracy. For example, ADA BOOST, XG BOOST. 
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Fig. 3.4: Boosting RF Classifier. 

 

4. RESULTS AND DISCUSSION 

Figure 1: This figure showcases the graphical user interface (GUI) designed for analyzing land 
cover changes using Landsat satellite data. It includes interactive elements for data 
visualization and analysis. Figure 2: Here, the dataset uploading process is illustrated, 
indicating how users can import Landsat satellite data into the GUI for analysis. This step is 
crucial for accessing the dataset and preparing it for further processing. Figure 3: Displaying 
the dataset preprocessing and data splitting steps, this figure demonstrates the necessary 
transformations applied to the Landsat satellite data to enhance its quality and usability. 
Preprocessing involve normalization, feature scaling, and splitting the data into training and 
testing sets. 

 

Figure 1: Displays the GUI of land cover changes with landsat satellite. 



 

 

 

Volume 12 Issue 02 Feb 2023                             ISSN 2456 – 5083                      Page 624 

 

 
Figure 2: Displays the uploading of dataset. 

 

Figure 3: Displays the dataset preprocessing and data spliting. 

Figure 4: Presented here are the confusion matrices for both the Ensemble model and Logistic 
Regression model. These matrices provide insights into the performance of each model by 
showing the counts of true positive, true negative, false positive, and false negative predictions. 

Figure 5: This figure presents a performance comparison count plot, depicting various 
evaluation metrics such as accuracy, precision, recall, and F1-score for each model. The plot 
allows users to visually compare the performance of different models and select the most 
effective one for their analysis. Figure 6: Here, the proposed Ensemble model's predictions on 
test images are illustrated. Users can observe the model's classifications of land cover changes 
based on Landsat satellite data, providing valuable insights into environmental changes over 
time. 
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Figure 4: Confusion matrix of Ensemble model. 

 

Figure 4: Confusion matrix of Logistic Regression model. 

 



 

 

 

Volume 12 Issue 02 Feb 2023                             ISSN 2456 – 5083                      Page 626 

 

 

Figure 5: Performance comparison count plot of each model. 

 

 

Figure 6: Proposed Ensemble model prediction on test images. 

Table 1: Performance comparison of quality metrics by ML models. 

 

Model 

 

Logistic regression  

 

Ensemble Classifier 

model 

Accuracy (%) 96 98 
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Precision (%) 96 98 

Recall (%) 96 98 

F1-score (%) 96 98 

 

5. CONCLUSION 

In conclusion, the current state of monitoring Earth's vital signs relies on traditional methods 
that may lack real-time analysis and predictive capabilities. The use of the Naive Bayes model, 
while simple and efficient, may face limitations in capturing complex relationships within the 
diverse and dynamic datasets associated with seismic activities, cyclones, floods, and wildfires. 
To address these limitations, the proposed system integrates a Convolutional Neural Network 
(CNN) with the VGG16 model and the Random Forest algorithm as an ensemble learning 
model. This hybrid approach enhances the system's ability to extract features from input images 
and make accurate predictions for Earth's vital signs. 
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