
 
 

Vol 11 Issue 12, Dec 2022         ISSN 2456 – 5083                                        www.ijiemr.org 

  

COPY RIGHT  

 

2022 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must 

be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works. No Reprint should be done to this paper, all copy 

right is authenticated to Paper Authors   

IJIEMR Transactions, online available on 26
th

 Dec 2022. Link 

:http://www.ijiemr.org/downloads.php?vol=Volume-11&issue=Issue 12 

10.48047/IJIEMR/V11/ISSUE 12/106  

TITLE: A STUDY OF NUMERICAL SCHEME FOR MATHEMATICAL FORMULATION ON 

INITIAL-BOUNDARY VALUE PROBLEMS 

 

Volume 11, ISSUE 12, Pages: 797-806 

Paper Authors  AKHILESH KUMAR YADAV, DR. DIPITI VASDEV 

 

                          

                                                                                    USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER 

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic 

Bar Code 

http://www.ijiemr.org/


Vol 11 Issue 12, Dec 2022                                    ISSN 2456 – 5083 Page 797 

 

A STUDY OF NUMERICAL SCHEME FOR MATHEMATICAL 

FORMULATION ON INITIAL-BOUNDARY VALUE 

PROBLEMS 
CANDIDATE NAME- AKHILESH KUMAR YADAV 

DESIGNATION- RESEARCH SCHOLAR SUNRISE UNIVERSITY ALWAR 

GUIDE NAME -  DR. DIPITI VASDEV 

DESIGNATION- Professor SUNRISE UNIVERSITY ALWAR 

 

ABSTRACT 

In mathematics, in the field of partial differential equations, an initial value problem (also called 

the Cauchy problem) is a partial differential equation together with a specified value called the 

initial condition of the unknown function at a given point in the domain of the solution. In 

physics or other sciences, modelling a system frequently amounts to solving an initial value 

problem. Boundary value problems arise in several branches of physics, as any physical 

differential equation will have them. Problems involving the wave equation such as the 

determination of the normal nodes are often stated as boundary value problems. Boundary value 

problems are similar to initial value problems. A boundary value problem has conditions 

specified at the extremes (boundaries) of the independent variable in the equation, whereas an 

initial value problem has all the conditions specified at the same value of the independent 

variable (the value is at the lower boundary of the domain thus, the term initial value). To be 

useful in applications, an initial value problem as well as a boundary value problem should be 

well posed. This means that given the input to the problem, there exists a unique solution which 

depends continuously on the input. 

KEYWORDS: Mathematical Formulation, Initial-Boundary, Value Problems, First Order 

PDES, Unbounded Domains, differential equations 

 

INTRODUCTION 

In this study, a finite difference scheme for first order hyperbolic equation in two independent 

variables x and t is developed. The first variable is typically space and the second variable 

usually represents time. A major challenge when designing finite difference scheme for 

hyperbolic equation is to design them to be stable while, at the same time ensuring that they do 

not damp out of the solution. In this proposed work, the numerical approximation schemes for 

initial and initial-boundary value problems are established. 

Motivation 

There is a vast literature on first order hyperbolic partial differential equations. Much effort has 

gone into devising the numerical approximation schemes for initial value problems and initial-

boundary value problems. Gottlieb et al (1987), Bo (1998) and Coulombel (2009) studied the 

stability of finite difference schemes for first order hyperbolic initial-boundary value problems 
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involving vector values functions in L2(IR+, IRN ). In 1988, Warming and Beam studied the 

stability of semi- discrete approximations to the initial-boundary value problem 

                  (1) 

where a > 0 with v(t) ≡ 0 in L2[0, A]. Sekino and Hamada (2008) developed the numerical 
solution of a advection equation ut + (a(x)u)x = 0 using wavelets. Despres (2009) and Teng 

(2010) established the finite difference schemes for the initial value problem 

                (2) 

for discontinuous initial functions u0 which are bounded. These works derive the motivation to 

develop the numerical scheme for initial and initial-boundary value problem. 

 Problem Formulation 

In this proposed work, the first model problem is an Initial Value Problem (IVP) on an infinite 

interval. 

        (3) 

where a(x) > 0 for all x ∈ IR+ and u = u(x) is some given function that is called as the initial 

condition and u ∈ C(IR+). Equation (3) is the model for wave propagation in homogeneous 

media. 

The second model problem is called as Initial-Boundary Value Problem (IBVP) defined as 

    (4) 

In this case, assume that a > 0 and that a boundary condition v(t) is given when x = 0. This is 

correct boundary condition because information is coming from left to right and u ∈ C[0, 1] and 

v ∈ C[0, ∞) satisfying the compatibility condition u(0) = v(0). 
The main difference between the IVP (3) and IBVP (4) is the presence of a boundary condition. 

This latter condition is needed in many situations. 

In this research work, to develop the fully discrete convergent numerical scheme for the 

problems IVP (3) and IBVP (4), semigroup theory was very much used.   Semigroup theory 

provided an elegant method for constructing a solution to the initial-boundary value problems. 

PRELIMINARIES 
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This section is devoted to some preliminary definitions and special case of Theorem of Pazy 

(1983) which was used as the major tool in this work. 

Theorem 1. Let X be a Banach space with norm ǁ ǁ. Assume that D(A) is dense in X, A : D(A) 
−→ X is a linear map and there is a λ with ℜ(λ) > 0 such that the range of λI − A is dense in X. 
Suppose that Xn are Banach spaces with norms ǁ ǁn.  Further,  for every n ≥ 1 there exist bounded 

linear operators Pn  : X  → Xn  and En : Xn → X such that 

 
Let  F (τn)  be  a  sequence  of  bounded  linear  operators  from  Xn  into  Xn satisfying 

                (5) 

Besides, the bounded linear maps 

 
have the property that 

 
and that 

                (6) 

for all x ∈ D(A). Then A¯ , the closure of A is the infinitesimal generator of a contraction 

semigroup S(t) on X. Moreover, if knτn → t as n → ∞, then 

 
In the sequel, the term solution refers to a generalized solution in an appropriate sense. 

 
Theorem 2 (Hille-Yosida Theorem).  A linear (unbounded) operator A is the infinitesimal 

generator of a C0 semigroup of contractions T (t), t ≥ 0 if and only if, 
(i) A is closed and D(A) = X. 

         (ii) The resolvent set ρ(A) of A contains IR+ and for every λ > 0, 

              (7) 
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EXACT SOLUTION FOR INITIAL VALUE PROBLEM AND INITIAL-BOUNDARY 

VALUE PROBLEM 

This section is concerned with the exact solution for initial and initial-boundary value problem 

considered in this work. 

 Exact Solution for the Initial Value Problem 

It is well known that the solution to (3) is given by 

 

 
Here, the aim was to compute the solution u(x, t) of (3) which was not necessarily bounded, 

numerically on any bounded domain making use of the values of u(x, t) on a bounded domain. 

The following theorem facilitates this result. 

Theorem 1. Assume that a ∈ C[0, ∞) and a(x) > 0 for all x ∈ IR+. Let M > 0 and T > 0. Define 

aM : [0, M ] −→ IR+ as 

 

 
and let f ∈ C[0, M]. The solution to the problem 

  (8) 

exists, unique and is given by 

 

 
defines a contraction semigroup on C[0, M] whose generator is given by 
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and 

 
Further, choosing M > N such that 

             (9) 

provided f ∈ C[0, M] is the restriction of u to [0, M]. 

Proof. Define for t ≥ 0, Tt : [0, M] −→ [0, M] as 

 
Now, it is easy to show that Ts+t = Ts ◦ Tt. 

 
Also, it is easy to say that St is a semigroup, since Stf(x) = f(Ttx).  

It is obvious that kStfk ≤ kfk and hence St is a contraction semigroup.  
Now, by Hille-Yosida Theorem, if B is the generator of St then 

 
Now, consider the differential equation 
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which is equivalent to 

 

Since for every h ∈ X, there is a unique solution f ∈ D(A) to the above 

differential equation which is given by 

 
Hence it can be shown for the operators A and B, (I − A) −1 = (I − B) −1 . From this, one can 

easily conclude that D(A) = D(B) and for all g ∈ D(A), Bg = Ag.  

As β is a strictly increasing function by (3.9), for t ∈ [0, T] and x ∈ [0, N] then 

 
Hence 

 
From this, it is concluded that Stf(x) = V (x, t) = u(x, t) for all x ∈ [0, N] and t ∈ [0, T]. 

Exact Solution for the Initial-Boundary Value Problem 

Theorem 2. Let u ∈ C[0, 1] and v ∈ C[0, ∞) be such that u(0) = v(0). Define u0(x) = u0(x) − 
u0(0). If U is a solution to (4), U is a solution to 

               (10) 

and V is a solution to 
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            (11) 

then U(x, t) = U(x, t) + V (x, t). Further, fixing T > 0, define the contraction semigroups St : X 

→ X where X = {u ∈ C[0, 1] : u(0) = 0} and Tx : Y −→ Y 

where Y = C[0, T] as 

 
Then U(x, t) = Stu0(x) + Σxw(t) for all (x, t) ∈ [0, 1] × [0, T], where w is the restriction of v to 

[0, T]. 

Further, if A and B denote the generators of St and Tx respectively, then  

D(A) = {g ∈ X : g ′ ∈ X} , D(B) = {g ∈ Y : g ′ ∈ Y and g ′ (0) = 0} , Ag = −ag′ for all g ∈ D(A) 

and Bg = −1 a g ′ for all g ∈ D(B). 

CONVERGENT NUMERICAL SCHEME FOR THE INITIAL VALUE PROBLEM AND 

INITIAL-BOUNDARY VALUE PROBLEM 

This section explains the convergent numerical scheme for the initial and initial-boundary value 

problems. For the initial value problem, one can obtain a modified problem posed on a bounded 

domain whose solution exactly coincides with the solution of the original problem on a smaller 

bounded domain. The numerical solution to the modified problem converges to the solution of 

the original problem on the smaller bounded domain. For the initial-boundary value problem, 

one can present the discrete semigroup approximations after decomposing it into two problems 

each of which gives rise to a semigroup. 

A Convergent Numerical Scheme for the IVP 

For the initial value problem (3), for every subset [0, N ] × [0, T ] ⊂ IR+ × IR+,  one  can  obtain  

M  >  N  and  an  initial  value  problem posed on [0, M] × [0, T] whose solution exactly 

coincides with the solution of (3) on [0, N] × [0, T]. Then one develops a finite difference 

scheme converging to the solution of the problem posed solution to (3) on [0, M] × [0, T] which 

converges to the solution to (3) on [0, N] × [0, T]. 

The following theorem facilitates this result. 
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Theorem 1. Let X = C[0, M ] and A be as in Theorem 1. Let Xn = IRn+1 whose elements are 

denoted as α = (α0, α1, . . . , αn). Both spaces X and  Xn  are normed with the usual supremum 
norm. Now define 

Pn : X → Xn as (Pnf )i = f (iM/n), i = 0, 1, . . . , n.  
En : Xn → X as 

En(α) is the piecewise linear function with En(α)(iM/n) = αi. Let 

 
Define an operator F (τn) : Xn → Xn as 

 

Choosing kn = , it can be shown that 

     (12) 

         In particular, fixing t ∈ [0, T ] and x ∈ [0, N ], 

                   (13) 

where u(x, t) is the solution to (3). 

Proof. Pn is obviously linear and ||Pn|| ≤ 1. From the definitions of the norms and the uniform 
continuity of the elements of X, it is also clear that (ii) of Theorem 1 is satisfied. One can easily 

obtain that ||En|| ≤ 1. 
Obviously, PnEn = In and (iii) of Theorem 1 follows from the uniform continuity of the element 

of X and the definitions of En and Pn. Now, it is easy to formulate the difference equation giving 

rise to the definition of F (τn). Consider for each given n and τn functions defined on the lattice 
(iM/n, jτn), i = 0, 1, 2, . . . , j = 0, 1, 2, . . . in the (x, t) plane. 
Let V (iM/n, jτn) = ui,j . Noting that sup x∈[0,M] aM(x) > 0, τn is well defined. Consider the 
difference equation corresponding to the differential equation in (8) is
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If ui,0 = fi are given, then one can compute all ui,j by the above recursion formula. Let fi = 

f(iM/n).  

Now, 

 
Therefore, ||F(τn)|| ≤ 1 and the stability condition (5) of Theorem 1 holds. 

 (14) 

Since f ∈ D, Af is uniformly continuous on [0, M] and therefore, the right hand side of (14) tends 

to zero as n → ∞. Hence (3.6) of Theorem 1 is satisfied. 
Finally, Theorem 1 is applied to this problem, one has to show that for some λ > 0 the range λI − 
A is dense in X. But in Theorem 1 it is already shown that the range of λI − A is the whole of X. 
Also, using the expression of (I − B) −1 in of Theorem 1, ||(I − A) −1h|| ≤ khk.  
CONCLUSION 

In this short final study, we give an overall assessment of the logic of partial functions, as 

currently understood, and make some suggestions for future research. First, we reiterate what 

was said in the introduction to this thesis: that partial functions have, in general, more favourable 

logical and computational properties than binary relations. The results in this thesis only 

reinforce this viewpoint. Consider those operations with a first-order definition—by which we 

mean definable in the manner required by the fundamental theorem, It had already been 

established that when considering these types of operations, generally the representation classes 

are finitely axiomatisable and have equational theories of low complexity, the finite 

representation property is satisfied, and representability of finite algebras is simple to decide. 

And it had been found that these remarks extend to multiplace functions as well. This is all in 

contrast to how relations behave. If we are to reason about programs specified by code written in 

any general-purpose (that is to say, Turing-complete) language, then we are certainly going to 

need to be able to express some kind of un- bounded iteration operation. However, obtaining 

results by translating in this way necessarily requires antidomain in the signature. If we have in 



Vol 11 Issue 12, Dec 2022                                    ISSN 2456 – 5083 Page 806 

 

mind to model partial recursive functions without any restrictions, then it is difficult to justify 

including antidomain, as identifying the points where partial recursive functions are undefined is 

not in general and effectively computable operation and so not expressible in any programming 

language.  
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