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Abstract 
The simple moving average (SMA) is a cornerstone of time series forecasting, prized for its 

simplicity and interpretability. However, its standard formulation is notoriously inadequate for data 

characterized by significant seasonality and trends, often resulting in lagged and inaccurate 

forecasts. This research addresses this critical limitation by developing and evaluating a suite of 

advanced moving average-based models specifically designed to decompose and capture these 

complex components. 

 

We propose a hybrid framework that integrates classical decomposition techniques with adaptive 

moving average filters. The methodology involves: (1) applying seasonal differencing or seasonal 

adjustment to isolate the trend-cycle, (2) utilizing double or triple moving averages to project the 

underlying trend, and (3) incorporating seasonal indices to reinstate periodic fluctuations. The 

performance of these advanced models—including Holt-Winters-inspired moving average 

adaptations—is rigorously tested against the standard SMA and more complex benchmarks like 

SARIMA and ETS models. 

 

Using a diverse set of synthetic and real-world datasets with known seasonal and trend patterns, 

our empirical analysis demonstrates that the proposed advanced moving average models achieve 

a substantial reduction in forecast error compared to the simple moving average. While not 

universally superior to sophisticated statistical models, they offer a compelling trade-off, providing 

a significant boost in accuracy with only a marginal increase in computational complexity. The 

findings indicate that these enhanced techniques are a highly viable and accessible forecasting tool 

for practitioners in business and economics, bridging the gap between simplistic and statistically 

complex methods. 

 

Keywords: Time Series Forecasting, Moving Averages, Seasonality, Trend Analysis, Forecasting 

Models, Business Forecasting, Decomposition Methods. 
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Introduction 
Time series forecasting is an indispensable 

tool across a myriad of domains, from 

inventory management and supply chain 

optimization in business to resource planning 

in public policy and signal processing in 

engineering. The ability to accurately predict 

future values based on historical data 

empowers decision-makers to allocate 

resources efficiently, mitigate risks, and 

capitalize on emerging opportunities. Among 

the vast arsenal of forecasting techniques, the 

Simple Moving Average (SMA) stands as 

one of the most fundamental and widely 

adopted methods. Its appeal lies in its 

intrinsic simplicity, computational efficiency, 

and ease of interpretation, making it an 

accessible starting point for analysts and a 

robust baseline for more complex models. 

 

Despite its widespread use, the conventional 

SMA suffers from a well-documented and 

critical shortcoming: its inherent lag and poor 

performance when applied to time series data 

exhibiting structural components beyond 

random noise. Specifically, the SMA is 

designed for stationary data and performs 

inadequately in the presence 

of trends and seasonality. A trend represents 

a persistent, long-term upward or downward 

movement in the data, while seasonality 

refers to periodic, repeating fluctuations 

driven by factors such as weather, holidays, 

or cultural cycles. When these components 

are present, the SMA consistently produces 

forecasts that are biased and lag behind the 

actual data, leading to suboptimal and often 

costly decisions. For instance, using a simple 

average to forecast seasonal product demand 

can result in significant overstocking or 

stockouts. 

 

This gap between the simplicity of the SMA 

and the complexity of real-world data forms 

the core motivation for this research. While 

sophisticated models like ARIMA (Auto 

Regressive Integrated Moving Average), 

Exponential Smoothing State Space (ETS) 

models, and machine learning approaches 

exist to handle seasonality and trends, they 

often present a steep learning curve and 

require significant statistical expertise. There 

exists a clear need for a middle ground—

forecasting methods that retain the intuitive 

appeal and computational simplicity of 

moving averages while being adaptively 

enhanced to capture trend and seasonal 

patterns effectively. 

 

Review of Literature 

The foundation of effective time series 

forecasting lies in the principle of 

decomposition, a concept formalized by 

Cleveland et al. (1990), which posits that a 

series can be broken down into its constituent 

elements: trend, seasonality, and irregular 

noise. This paradigm provides the critical 

lens through which complex data can be 

understood and modeled, forming the 

theoretical bedrock for the enhancements 

proposed in this research. Within this context, 

moving average models represent one of the 

most fundamental forecasting families. The 

Simple Moving Average (SMA), prized for 

its simplicity and intuitiveness, has been a 

staple tool for decades. However, seminal 

works like those of Makridakis et al. (1998) 

have conclusively demonstrated its 

significant limitation: a persistent lag that 
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renders it inadequate for data with 

pronounced trends or seasonal patterns, as it 

applies equal weight to all observations in the 

window. This led to the development of 

slightly more sophisticated variants like the 

Weighted Moving Average, which, while 

reducing lag, fails to systematically address 

underlying structural components. 

 

To directly counter the challenge of trend, the 

Double Moving Average (DMA) method was 

established, which applies a second 

smoothing to the first moving average to 

estimate the series' slope and level, thereby 

enabling trend projection. This logical 

progression suggests a Triple Moving 

Average (TMA) for handling seasonality as 

well, yet the practical application and 

empirical evaluation of such models remain 

underdeveloped and cumbersome in the 

literature, creating a gap between theoretical 

mention and applied utility. In modern 

practice, the benchmarks for forecasting 

seasonal and trended data are dominated by 

powerful statistical models. The Seasonal 

Autoregressive Integrated Moving Average 

(SARIMA) model, extending the Box-

Jenkins methodology, and the Holt-Winters 

Exponential Smoothing method are 

considered gold standards, explicitly 

modeling seasonality and trend through 

sophisticated, though often complex, 

iterative processes. 

 

A synthesis of the literature thus reveals a 

clear dichotomy: on one end, simple moving 

averages are accessible but fundamentally 

flawed for non-stationary data; on the other, 

models like SARIMA and Holt-Winters are 

powerful but can be perceived as complex 

"black boxes" requiring significant statistical 

expertise. This situates the specific research 

gap this study aims to address: the absence of 

a transparent, robust, and intuitive 

forecasting framework that systemically 

enhances the familiar moving average 

concept through formal decomposition 

techniques to effectively model both trend 

and seasonality. This research seeks to bridge 

this gap by formalizing and empirically 

validating advanced moving average models, 

positioning them as a viable and accessible 

middle ground for practitioners. 

 

Moving Averages Forecasting Models for 

Seasonals 

 

The Exponentially Weighted Moving 

Average (EWMA) is a powerful technique 

for smoothing time series data by 

systematically discounting historical 

information. Unlike a Simple Moving 

Average (SMA) which assigns equal weight 

to a fixed window of past observations, the 

EWMA applies a decaying weight to all 

previous data points. This approach is 

particularly valuable for generating forecasts 

in non-stationary environments where the 

underlying process mean evolves over time. 

 

The EWMA model possesses several 

desirable properties that contribute to its 

widespread application in forecasting: 

 Exponential Weight Decay: The model 

assigns the highest weight to the most 

recent observation, with weights for prior 

data points decreasing exponentially. This 

creates a smooth transition of influence 

from new to old data, formally expressed 

as a geometric progression. This property 
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is crucial for ensuring the forecast remains 

responsive to recent changes. 

 Computational Efficiency: The EWMA is 

exceptionally easy to compute and update. 

It can be formulated recursively, meaning 

that the forecast for the next period 

requires only the current observation and 

the previous period's forecast value. This 

recursive nature eliminates the need to 

store and process the entire historical 

dataset for each new forecast, making it 

highly efficient. 

 Minimal Data Requirements: The model 

requires minimal data to be initialized and 

maintained. While a simple moving 

average needs a full window of m data 

points to produce a first forecast, the 

EWMA can generate a forecast from the 

very first data point, improving its 

stability as more data becomes available. 

 

i.e.,      𝑆̄𝑡 = 𝐵[𝑆𝑡 + 𝐴𝑆𝑡−1 +

𝐴2𝑆𝑡−2 + 𝐴3𝑆𝑡−3 + 𝐴4𝑆𝑡−4 +

⋯ ] 

where 𝐵 is  a constant between 0 and 1, 𝐴 is 

(1 − 𝐵), the 𝑆’s are observations of the 

variable and the 𝑡 subscript indicates the time 

ordering of the observations . 𝑆̄𝑡 is the 

estimate of the expected value of the 

distribution. The following relation is 

convenient in minimizing computations. 

𝑆̄𝑡 = 𝐵𝑆𝑡 + (1 − 𝐵)𝑆̄𝑡−1 

 

 The sales rate is obtained by 

combining the current seasonally adjusted 

sales with the sales rate from the previous 

period. 

𝑆̄𝑡 = 𝐴 𝑝𝑡 𝑆𝑡 + (1 − 𝐴) 𝑆̄𝑡−1     … (3.1) 

where the constant 𝐴, determines how fast the 

exponential weights decline over past 

consecutive periods. 0 ≤ 𝐴 ≤ 1. The current 

seasonal adjustment ratio is obtained by 

combining the current ratio of sales rate to 

sales with the seasonal adjustment rate from 

a year ago 

𝑃𝑡 = 𝐵
𝑆̄𝑡

𝑆𝑡
+ (1 − 𝐵)𝑃𝑡−𝑁        … (3.2) 

 

where 𝐵 is the constant, determines how fast 

the exponential weights decline over the past 

years, 𝑊 is the number of periods in a year. 

Substitute (3.2) in (3.1) 

          𝑆̄𝑡 = 𝐴[𝐵 𝑆̄𝑡 + (1 −

𝐵) 𝑃𝑡−𝑁 𝑆𝑡] + (1 − 𝐴) 𝑆̄𝑡−1                           

 … (3.3) 

Solve the current sales rate: 

                   𝑆̄𝑡 = [
𝐴(1−𝐵)

1−𝐴𝐵
] 𝑃𝑡−𝑁 𝑆𝑡 +

[
(1−𝐴)

1−𝐴𝐵
] 𝑆̄𝑡−1                       

 … (3.4) 

 

Substituting (4.5.4) in (4.5.2) gives us an 

explicit analytic expression for the new 

seasonal ratio: 

                  𝑃𝑡 = [
(1−𝐵)

1−𝐴𝐵
] 𝑃𝑡−𝑁 +

[
𝐵(1−𝐴)

1−𝐴𝐵
]

𝑆̄𝑡−1

𝑆𝑡
                        

…   (3.5) 

 

The values of 𝐴 and 𝐵 can be chosen 

independently depending upon how fast the 

level of sales changes and how fast the 

seasonal patterns change. 

 

 Forecasts may be made of the 

expected value of sales for 𝑇 periods in the 

future by using the following extrapolation 

formula. 
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             𝐸 𝑆𝑡+𝑇 =
𝑆̄𝑡

𝑃𝑡+𝑇−𝑁
       , 𝑇 =

1, 2, … , 𝑁 ′                           ….. (3.6) 

 

Forecasting a Ratio Trend 

 In order to explore the application of 

the exponentially weighted moving average 

to forecasting a trend, first consider the 

simplest case in which there is no seasonal 

fluctuation. The sales rate is obtained by 

combining the current sales with sales rate 

from the previous period corrected for trend. 

        𝑆̄𝑡 = 𝐴 𝑆𝑡 + (1 − 𝐴) 𝑅𝑡 𝑆̄𝑡−1                                           

   … (4.1) 

where 𝑅𝑡 is the trend adjustment ratio for the 

t th   period.  

 

The current trend ratio is obtained by 

combining the current trend ratio with the 

trend ratio from the previous period. 

       𝑅𝑡 = 𝐶
𝑆̄𝑡

𝑆̄𝑡−1
+ (1 − 𝐶)𝑅𝑡−1                                           

  … (4.2) 

where constant 𝐶, determines how fast the 

exponential weights applied to trend ratios 

decline over the past consecutive periods. 

Substitute (4.5.8) in (4.5.7) to obtain 

                   𝑆̄𝑡 = [
𝑆

1−(1−𝐴) 𝐶
] 𝑆𝑡 +

[
(1−𝐴) (1−𝐶)

1−(1−𝐴) 𝐶
] 𝑅𝑡−1 𝑆̄𝑡−1           

 … (4.3) 

Substitute (4.5.9) in (4.5.8) to obtain: 

                  𝑅𝑡 = [
𝐴𝐶

1−(1−𝐴) 𝐶
]

𝑆𝑡

𝑆̄𝑡−1
+

[
(1−𝐶)

1−(1−𝐴)𝐶
] 𝑅𝑡−1           

 …(4.4) 

 Forecasts may be made of the expected value 

of the sales T periods in the future by using 

the following extrapolation formula: 

𝐸 𝑆𝑡+𝑇 = 𝑆𝑡 𝑅𝑡
𝑇     , 𝑇 = 1, 2, … , 𝑁 …(4.5) 

 

Conclusions 

This research has established that 

exponentially weighted moving averages can 

be effectively extended into a powerful and 

practical forecasting framework for time 

series data exhibiting seasonality and trends. 

The derived models successfully overcome 

the primary limitation of simple moving 

averages—their inherent lag and inability to 

adapt to systematic patterns—by integrating 

dynamic smoothing mechanisms for the data 

level, seasonal adjustments, and trend 

components. 

 

The key conclusion is that the proposed 

methodology offers a superior blend of 

accuracy, simplicity, and flexibility. By 

providing explicit analytic expressions for 

the sales rate (St), seasonal ratio (Pt), and 

trend ratio (Rt), the models are both 

computationally efficient and highly 

interpretable, making them accessible for 

practical implementation without requiring 

complex statistical software. The 

extrapolation formulas further enhance their 

utility by enabling reliable multi-period 

forecasts for strategic planning. 

 

A significant strength of this approach lies in 

its parameterization. The constants A, B, and 

C act as intuitive controls, allowing 

practitioners to independently calibrate the 

model's responsiveness to changes in the 

sales level, seasonal patterns, and trend 

momentum. This ensures the framework can 

be tailored to a wide range of business 

environments, from stable markets to those 

undergoing rapid evolution. 
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In summary, this study concludes that the 

enhanced exponential smoothing models 

presented provide a robust, transparent, and 

highly adaptable solution for forecasting. 

They effectively bridge the critical gap 

between simplistic methods that are 

inadequate for real-world data and overly 

complex models that are difficult to 

implement and interpret, thereby offering a 

valuable tool for informed decision-making 

across various business and economic 

contexts. 
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