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ABSTRACT 

One prominent area of research involves the study of additive number theory within finite 

abelian groups. This branch delves into questions related to representations of integers as 

sums of group elements, exploring topics such as the Frobenius coin problem and Goldbach-

type theorems in this setting. These problems not only deepen our understanding of number 

theory but also have practical applications in cryptography and coding theory. Combinatorial 

number theory also plays a pivotal role in understanding finite abelian groups. Researchers 

investigate questions concerning the distribution of elements with specific properties, such as 

primitive roots, quadratic residues, and primitive Pythagorean triples, within these groups. 

This combinatorial approach often involves exploring patterns and regularities in group 

elements' behavior, shedding light on the intrinsic connections between algebra and 

combinatorics. Addressing problems in algebraic and combinatorial number theory connected 

to finite abelian groups is a fascinating and intricate field of mathematics that uncovers the 

hidden relationships between algebraic structures and combinatorial phenomena. This 

multidisciplinary approach has far-reaching implications across various branches of 

mathematics and continues to inspire new discoveries and applications. 

KEYWORDS:- Torsion Groups, Mordell Curves, Cubic And Sextic Field, abelian groups, 

combinatorial approach. 

INTRODUCTION 

Definition .1: A field K in C is called number field if the dimension of K as a vector space 

over Q is finite. The dimension is known as the degree of K over Q and it is denoted by [K : 

Q]. 

Definition 2. An Elliptic curve E over a field K is a curve of the form 
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where a1,...,a6 ∈ K. 

We consider the set E(K) = {P = (x, y) : x, y ∈ K and E(x, y)=0} ∪ {O}, where O is the point 

of infinity. This set E(K) turns out to be a group under binary operation, addition, and E(K) is 

called the set of all K-rational points of the elliptic curve E. The group E(K) is also called the 

Mordell-Weil group of E over K. 

Theorem 1: Let E be an elliptic curve defined over K. Then E(K) is a finitely generated 

abelian group. 

Hence, by the structure theorem of finitely generated abelian groups, we have E(K) ∼= T ⊕ 

Zr, for some non-negative integer r. We call r as the rank of the elliptic curve E and T is 

called the torsion subgroup of E(K). Sometimes we may write T = E(K)tors. 

The next topic is about all possible groups appearing as E(K)tor. 

Notation 1-For an integer d ≥ 1, we define Φ (d) = {E(K)tors : K/Q is a number field of 

degree d and E is an elliptic curve defined over K}. For any two element A, B ∈ Φ (d), we 

say A ∼ B if and only if A ∼= B. Then ∼ is an equivalence relation on Φ (d) and let Φ(d) := 

Φ (d)/ ∼. In short, for a fixed natural number d ≥ 1, the set of all possible torsion subgroups 

of elliptic curves defined over number field of degree d is denoted by Φ(d). 

Theorem 2.  Let d ≥ 1 be an integer. Then the number of elements in Φ(d) is finite.  

When we restrict elliptic curves over Q, we define the following notation in a similar way 

Notation 2. When K varies over any number field of degree d and E varies over any any 

rational elliptic curve, then the set of all possible torsion subgroups of E(K) (up-to 

isomorphism) is denoted by ΦQ(d). 

Note that when K = Q, we see that Φ(1) = ΦQ(1).  

When K = Q, in [60], Mazur proved that 
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By a result of Kamienny and by another result of Kenku and Momose, it is known that 

 

Also, it has been proved that if K varies over all cubic number fields and E varies over all 

elliptic curves over K, then the group structures which appear infinitely often as E(K)tors are 

exactly the following 

 

From the above information, we can say that the set of these 25 groups is a subset of Φ(3). 

Moreover, in the same paper, they proved that if E varies over all rational elliptic curves, then 

each elements of Φ(1) occurs infinitely often as E(Q)tors. They have also mentioned that all 

26 groups in Φ(2) occur infinitely often as E(K)tors, when K varies over all quadratic number 

fields and E varies over all elliptic curves over K. 

Moreover, it has been determined that which groups of the form Z/MZ ⊕ Z/NZ occur 

infinitely often as torsion groups E(K)tors when K varies over all quartic number fields and E 

varies over all elliptic curves over K. However in general it is still unknown about the set 

Φ(d) for d ≥ 3.  

PRELIMINARIES  

3. Basics on Number field 

In this section, we shall state some basics results in algebraic number theory which are useful 

later 
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Proposition 2. Let K be a number field and OK be the ring of integers of K. For a prime 

number p ∈ Z, the principal ideal can be written uniquely as a product of prime ideals. That 

is, pOK = Pe1 1 ···Per r where P1,...,Pr are prime ideals in OK and r is some integer. 

Here ei is called the ramification index of Pi. 

Definition 2. Let p be a prime number in Z and P be a prime ideal in OK such that POK ∩ Z 

= pZ. Then OK/P is a finite dimensional vector space over Z/pZ and the dimension is f = 

[OK/P : Z/pZ]. The number f is called the residue degree of P. 

 

Notation 2. For a number field K, we denote the algebraic closure of K by K. The Galois 

group of K over K is denoted by Gal(K/K), where Gal(K/K) is the inverse limit of Gal(L/K) 

as L varies over all finite Galois extensions of K. 

Basics on elliptic curves over number field 

Let K be a field. We consider elliptic curves as defined in Definition 2. If char , then 

the substitution  transforms E to the form 

 

If K is a number field, then char(K)=0 and hence we, now onwards, for an elliptic curve E 

defined over a number field K, consider E is of the form 
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(2)  

For any point Q = (x, y) on the curve (2), we denote its reflection as −Q = (−x, y). For any 

two points Q1 and Q2 on the curve, the line joining Q1 and Q2 cuts the curve E on the third 

point Q3 = Q1 +Q2. We define “addition” of Q1 and Q2 by Q1 ⊕ Q2 = −Q3 which is a point 

on the curve. Since E(K) forms a group under the binary operation ⊕, we want to describe 

duplication formula explicitly. 

 

Addtion formula 

Let Q1 = (x1, y1) and Q2 = (x2, y2) be two points on the curve (2.1) and Q3 = (x3, y3) be the 

point Q1 + Q2 as described above, where x3 and y3 can be computed as follows. 

Case 1: (x1  x2) 

 

This line intersects the cubic E already in two points (x1, y1) and (x2, y2). For finding the 

third intersecting point, we substitute y = λx + ν in the curve (1) and get 

 which we can write as 

(2) 

After equating the coefficients of the x2 term on both side, we get λ2 − a = x1 + x2 + x3 and 

thus 

(3) 

Case 2: (x1 = x2). 
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If y2 = −y1, then we get Q1 ⊕ Q2 = O, the point at infinity. If y2 = y1, then we calculate Q1 

⊕ Q1 = 2Q2. For the curve (1), we calculate the slope of the tangent which is given by 

 

Putting the value λ in the formula (3), we get the point 2Q2. Thus, we have 

4)  

This formula is called as the duplication formula. Similarly one can calculate the y coordinate 

of 2Q1 := y(2Q1) 

(5) 

In a similar way, for an integer n ≥ 2 and for any point P of an elliptic curve E, one can 

calculate x(nP) and y(nP). It turns out that they are rational functions in terms of x and y. 

Now, for any elliptic curve E defined over a field K and for an positive integer n, we define 

 

Any element of E(K)[n] is called an n-torsion point over K (or sometimes, n-division point).  

We observe that 

 

and we define 
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where E[n] is also called the full n-torsion of E. 

CONCLUSION 

In our exploration of problems within algebraic and combinatorial number theory connected 

to finite abelian groups, we have embarked on a journey that reveals the elegance and 

complexity of mathematics. Through this expedition, we have gained insights into the 

fundamental principles governing these groups and their interactions with various 

mathematical concepts. In this conclusion, we shall reflect on the strategies, techniques, and 

broader perspectives that are essential for dealing with such problems. A structured approach 

is paramount when tackling problems related to finite abelian groups. The first step is to 

develop a solid understanding of the foundational concepts and theorems that underlie these 

groups. The classification theorem for finite abelian groups, attributed to mathematicians like 

Carl Friedrich Gauss and Ernst Eduard Kummer, plays a pivotal role in this regard. This 

theorem establishes that every finite abelian group can be expressed as a direct sum of cyclic 

groups. Armed with this knowledge, mathematicians can categorize finite abelian groups and 

work with them systematically. Moreover, the isomorphism theorems, such as the 

Fundamental Theorem of Finite Abelian Groups, offer a powerful lens through which to 

analyze and understand these groups' structures. This theorem provides a clear and concise 

way to decompose a finite abelian group into its constituent cyclic subgroups, shedding light 

on its inherent properties. Consequently, understanding these theorems and their implications 

is crucial when approaching problems connected to finite abelian groups in algebraic and 

combinatorial number theory. 
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