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Abstract - The non-uniformly distributed nature of the 3D dynamic point cloud (DPC) brings 
significant challenges to its high-efficient inter-frame compression. This paper proposes a novel 
3D sparse convolution-based Deep Dynamic Point Cloud Compression(D-DPCC) network to 
compensate and compress the DPC geometry with 3D motion estimation and motion 
compensation in the feature space. In the proposed D-DPCC network, we design a Multiscale 
Motion Fusion (MMF) module to accurately estimate the 3D optical flow between the feature 
representations of adjacent point cloud frames. Specifically, we utilize a 3D sparse convolution 
based encoder to obtain the latent representation for motion estimation in the feature space and 
introduce the proposed MMF module for fused 3Dmotion embedding. Besides, for motion 
compensation, we propose a 3D Adaptively Weighted Interpolation (3DAWI) algorithm with a 
penalty coefficient to adaptively decrease the impact of distant neighbours. To our knowledge, 
this paper is the first work proposing an end-to-end deep dynamic point cloud compression 
framework. The experimental result shows that the proposed D-DPCC frame work. 

Keywords: Auxiliary information, Feature Extraction, Inter Prediction, Residual Compression, 

point cloud Reconstruction. 

 

I. Introduction 

In recent years, the dynamic point cloud (DPC) has become a promising data format for 

representing sequences of 3D objects and scenes, with broad applications in AR/VR, autonomous 

driving, and robotic sensing . However, compared with pixelized 2D image/video, the nonuniform 

distribution of DPC makes the exploration of temporal correlation extremely difficult, bringing 

significant challenges to its inter-frame compression. This paper focus on the dynamic point cloud 

geometry compression with 3D motion estimation.The existing dynamic point cloud compression 

(DPCC) methods can be concluded as 2D video based and 3D-model based methods. The 3D-

model-based methods rely on motion estimation and motion compensation on 3D volumetric 

models like octree [8]. However, the above methods are rule based, with hand-crafted feature 

extraction modules and assumption-based matching rules, resulting in unsatisfactory coding 

efficiency [9]. To this end, we propose a Deep Dynamic Point Cloud Compression (D-DPCC) 

framework, which optimizes the motion estimation, motion compensation, motion compression, 

and residual compression module in an end-to-end manner [10]. Our contributions are summarized 

as follows: 

 

1. We first propose an end-to-end Deep Dynamic Point Cloud Compression framework (D-DPCC) 
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for the joint optimization of motion estimation, motion compensation, motion compression, and 

residual compression. 

2. We propose a novel Multi-scale Motion Fusion (MMF)module for point cloud inter-frame 

prediction, which extracts and fuses the motion flow information at different scales for accurate 

motion estimation. For motion compensation, we propose a novel 3D Adaptively Weighted 

Interpolation (3DAWI) algorithm which utilizes the neighbor information and adaptively 

decreases the impact of distant neighbors to produce a point-wise prediction of the current frame’s. 

 

II. Literature review 

Dynamic Point Cloud Compression. Existing DPCC works can be mainly summarized as 2D-

video-based and 3D-model-based methods [1]. The 2D-video-based methods perform 3D-to-2D 

projection to utilize the 2D motion estimation (ME) and motion compensation (MC) algorithms. 

However, the 3D-model-based methods fail to fully exploit the temporal correlations, leading to 

inferior results than 2D-video-based methods [2]. Learnt Static Point Cloud Compression. Inspired 

by the implementation of deep learning techniques in image/video compression, recently learnt 

static point cloud compression (SPCC) networks have emerged [4]. However, these works are 

limited to small-scale point cloud datasets with only thousands of points. Thanks to the 

development of 3D sparse convolution propose an end-to-end sparse convolution-based multi-

scale SPCC network, which reports state-of-the-art performance on large-scale data sets [3]. 

 

Point Cloud Scene Flow Estimation. Recently, 3D scene flow estimation has received much 

attention, which inspires us to compress DPC geometry by 3D motion estimation. FlowNet3D is 

the representative work of 3D scene flow estimation, which integrates a set conv layer based on 

Point Net++  for feature extraction, followed by a flow embedding layer for point matching [5]. 

However, the above methods are trained on manually labelled scene flow data [5]. Learnt Video 

Compression. There are massive attempts to apply deep learning techniques to video compression 

and build an end-to-end framework [6]. Among them, DVC is the first video compression deep 

model that jointly optimizes all the components for video compression. For more accurate motion 

estimation, further proposes FVC by performing inter-frame prediction in the feature space, 

reporting superior performance over DVC [7]. 

 

III. System Model 

1.Video Acquisition Module: Video acquisition is the initial step in the pipeline for advanced 3D 

motion prediction and compression of dynamic point clouds. This step involves capturing raw data 

from the physical environment. It involves using specialized 3D capture devices, ensuring 

synchronization of data from multiple sensors, and preprocessing the raw data to enhance its 

quality. Proper acquisition and preprocessing of video data are essential for accurate feature 

extraction, motion estimation, and compression, ultimately leading to high-quality reconstruction 

and efficient transmission of 3D dynamic scenes. 

2.Feature Extraction: The feature extraction module consists of two serially connected Down 

sample Blocks for the hierarchical reduction of spatial redundancies, which encodes the current 

frame xt and the previously reconstructed frame xˆt−1 as latent representation yt and yˆt−1. 
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Inspired by Wang et al, we adopt the sparse CNN-based Down sample Block for low-complexity 

point cloud down sampling. The Down sample Block consists of a stride-two sparse convolution 

layer for point cloud. 

3.Inter Prediction: The inter prediction module takes the latent representation of both the current 

frame and the previously reconstructed frame, i.e., yt and yˆt−1 as input, analysing the temporal 
correlation and producing the feature prediction of yt, i.e., y¯t. The existing 3D scene flow 

estimation networks estimate a motion flow between two frames p1 and p2to minimize the 

distortion between D and the ground truth D∗ . However, without end-to-end optimization, the 

predicted motion flow is unsatisfactory for motion compensation and motion compression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The overall architecture of D-DPCC. xt and xˆt−1 are the current frame and the 
previously reconstructed frame. yt and yˆt−1are the associated latent representations in feature 
space. y¯t is the prediction of yt. rt and rˆt are the feature residual and reconstructed residual. y′t 
is the reconstruction value of yt in decoder. 

i. Motion Estimation: This step determines the movement of points between consecutive frames. 
Accurate motion estimation is crucial for effective compression, as it allows for the prediction of 
future frames based on past data. 
Block Matching-Search Window: Define a search area in the previous frame to find the best 
match for each block. Cross Correlation (NCC) to evaluate matches. 
 

ii.Motion Compression: It Compresses the motion information derived from motion       estimation   
to reduce its size while retaining accuracy. 

  Fixed Quantization: Apply a fixed quantization step size to reduce precision. 
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  Adaptive Quantization: Adjust the quantization step size based on the importance variability of 
the motion data. 

 

iii. Motion Compensation: It applies the motion vectors to the predicted frame to align it with the 
current frame, reducing prediction errors and improving the quality of the predicted data. 
Apply Motion Vectors: Point Displacement and Interpolation. 
 

4.Residual Compression: It Compresses the residual data, which represents the difference 
between the predicted frame and the actual frame. To efficiently encode the residual data, which 
captures details not accurately predicted, minimizing the data required to represent the entire 
point cloud sequence. 
 

5.Point Cloud Compression: It reconstructs the original point cloud data from the compressed 
information during the decompression phase with minimal loss of quality from the compressed 
bitstream, ensuring high fidelity to the original data.  
 

IV. Result 

We compare the proposed D-DPCC with the current state-of-the-art dynamic point cloud 
geometry compression framework: V-PCC Test Model v13, with the quantization parameter 
(QP) setting as 18, 15, 12, 10, 8, respectively. We also compare with Wang’s framework which 
is state-of-the-art on static object point cloud geometry compression. For the fairness of 
comparison, we retrain Wang’s framework using our training data and strategy, and the network 
parameters of each module are set the same as Wang’s except for the proposed inter prediction 
module. When using the proposed D-DPCC for interframe coding, the first frame of the 
sequence is encoded using Wang’s network with the same λ.              
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Figure 2: Visualization of the estimated motion flow. The leftmost column is the current frames; 
the left middle column is the previous frames; the middle right column is the concatenations of 
the current frames and the previous frames. The rightmost column visualizes the predicted 
motion flow, with green indicating stillness and purple indicating movement. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Ablation study on Red and black and Long dress for Multi-scale Motion Fusion (MMF) 
module. 

V. Conclusion: 

This paper proposes a Deep Dynamic Point Cloud Compression (D-DPCC) framework for the 
compression of dynamic point cloud geometry sequence. We introduce an inter prediction module 
to reduce the temporal redundancies. We also propose a Multi-scale Motion Fusion (MMF) module 
to extract the multi-scale motion flow. For motion compensation, a 3D Adaptively Weighted 
Interpolation (3DAWI) algorithm is introduced. The proposed D-DPCC achieves 76.66% BD-Rate 
gain against state-of-the-art V-PCC Test Model v13. information to derive a better motion vector 
predictor to deal with the patch inconsistency problem for both the geometry and attribute videos 
under the MPEG-I video-based point cloud compression (V-PCC) framework. In essence, we use 
the geometry or auxiliary information to derive the geometry of the current prediction unit to find 
the corresponding block in the reference frame. We provide both normative and non-normative 
solutions to adapt the proposed algorithm to different use cases. The experimental results show 
that the proposed solutions can provide both significant objective quality and subjective quality 
improvements. The experimental results obviously demonstrate the effectiveness of the proposed 
algorithm. In the future, we will further dive into finding better video compression algorithms for 
the V-PCC framework. 
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