

Vol 12 Issue 09, Sept 2023 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2023 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 07
th

 Sept 2023. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-12&issue=Issue 09

10.48047/IJIEMR/V12/ISSUE 09/07

Title Investigation of Distributed Embedded System Frameworks

Volume 12, ISSUE 09, Pages: 62-68

Paper Authors Dr. S M Shamsheer Daula, Dr. G Ramesh, Dr. G Amjad Khan, Mr. M Madhusudhan Reddy

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

http://www.ijiemr.org/

Vol 12 Issue 09, Sept 2023 ISSN 2456 – 5083 Page 62

Abstract— The manner that traditional systems are built is as a centralized system. In addition to this conventional strategy,

decentralized systems and distributed systems are also frequently used. The trend in system construction is moving away from

centralized systems and toward distributed systems. These three strategies are described and contrasted in the section that follows.

Traditionally, embedded systems have been centralized. One controller manages the various system components in such a system.

Sensors and actuators are among the component parts that are frequently near to one another and connected directly to the

controller. This kind of system can be simply implemented in small-scale systems. The direct and quick management of sensors and

actuators without the use of a hierarchical control system makes it ideal for small system that demands exceptional performance. A

good choice for real-time system implementation, such a system has low communication costs between sensors and controller.

However, centralized systems do not scale well. The complexity of handling the control of the units would rise as the number of

component units increased, leading to an increase in connections as well. The controller would need to have a large bandwidth and

high performance to handle all the operations due to the communication demand. Additionally, the physical routing and

arrangement of the sensors and actuators would be restricted by the central control unit.

Key Words: — client, peer, server, embedded system, distributed system.

I. INTRODUCTION

 A distributed real-time embedded system works like other

constant implanted frameworks, yet with a serious level of

heterogeneity. The heterogeneity permits the framework to

perform equal assignments that have dierent necessities on the

equipment, which in wording benefit the usefulness of the

framework. A DRE framework is heterogeneous in numerous

viewpoints, from equipment designs and programming parts

to the planning arrangements, correspondence conventions

and memory administrations. [1]. he handling execution and

adaptability of the framework can profit from the intricacy of

the heterogeneity. Such intricacy, be that as it may, presents

new difficulties in keeping up with and planning the

framework. It likewise expands the decultures for engineers to

program equal applications that can completely use the

handling potential of the system. [2-8].

The correspondence across hubs and the planning and

planning of errands in a DRE framework can be confounded.

A middleware is in many cases utilized in such framework to

keep up with the coordination and to permit the different free

equipment parts of the organization function overall

framework. Aside from the correspondence and dispatching

of errands, the framework likewise needs to meet the ongoing

requirement also as different limitations for an inserted

framework. This raises the test for planning a middleware for

a DRE framework.

Investigation of Distributed Embedded System Frameworks
[1]

Dr. S M Shamsheer Daula,
[2]

Dr. G Ramesh,
[3]

Dr. G Amjad Khan,
[4]

Mr. M Madhusudhan Reddy

 [1]
 Associate Professor,

[2]
 Associate Professor,

[3]
 Associate Professor,

[4]
 Assistant Professor

[1][2][3][4]

 Department of ECE, G Pulla Reddy Enginrreing College (A), Kurnool, 518007,

 Andhra Pradesh, India.
[1]

shamsheer.ece@gprec.ac.in,
[2]

 ramesh.ece@gprec.ac.in,
[3]

amjadkhan.ece@gprec.ac.in,
[4]

msreddym11.ece@gprec.ac.in

mailto:shamsheer.ece@gprec.ac.in
mailto:ramesh.ece@gprec.ac.in
mailto:amjadkhan.ece@gprec.ac.in
mailto:msreddym11.ece@gprec.ac.in

Vol 12 Issue 09, Sept 2023 ISSN 2456 – 5083 Page 63

II. RELATED WORK

There have been several studies and research papers

focusing on the performance analysis of selective memory

balancing techniques in architecture analysis. Here are some

related works in this area:

 Title " Reconfiguration Strategies for Critical Adaptive

Distributed Embedded Systems”" Authors: Adam Ballest.,

Johnson, A., Brown, M. Conference/Journal: IEEE

Distributed System, 2020

This paper proposes a machine learning-based memory

balancing technique for Distributed Embedded devices. It

employs a predictive model to analyze the data patterns and

dynamically allocate memory resources. The authors evaluate

the technique's performance using various distributed

Embedded workloads and demonstrate its effectiveness in

improving memory utilization and reducing data loss.

Title: "Performance Analysis of Data Compression

Techniques in Distributed Embedded Systems using Machine

Learning" Authors: Lee, S., Kim, H., Park,

J.Conference/Journal: ACM Transactions on Internet of

Things, 2019

This study focuses on analyzing the performance of data

compression techniques in Distributed Embedded systems

using machine learning. The authors compare different

compression algorithms and evaluate their impact on memory

utilization, processing time, and energy consumption. They

leverage machine learning models to predict the optimal

compression technique for a given Distributed Embedded

workload.

Title: "An Experimental Study on Data Offloading

Techniques for Memory-Constrained Distributed Embedded

Devices" Authors: Chen, L., Zhang, Q., Li,

L.Conference/Journal: International Conference on Mobile

Computing and Networking, 2018

This research investigates the performance of data

offloading techniques in memory-constrained Distributed

Embedded devices. The authors conduct experiments to

analyze the impact of offloading strategies on memory

utilization, network latency, and energy consumption. They

employ machine learning algorithms to predict the most

suitable data offloading technique based on the device's

available memory and network conditions.

Title: "Performance Evaluation of Data Aggregation

Techniques in Distributed Embedded Networks using

Machine Learning" Authors: Wang, X., Li, C., Zhang, Y.

Conference/Journal: IEEE Transactions on Network Science

and Engineering, 2021

This paper presents a performance evaluation of data

aggregation techniques in Distributed Embedded networks

using machine learning. The authors compare different

aggregation algorithms and assess their efficiency in reducing

data transmission overhead and conserving memory

resources. They utilize machine learning models to predict the

optimal aggregation technique based on the Distributed

Embedded network's characteristics.

These related works provide insights into the performance

analysis of selective memory balancing techniques in

Distributed Embedded using machine learning. They

contribute to the understanding of the benefits and limitations

of different techniques and help in identifying optimized

memory management strategies for Distributed Embedded

devices.

https://www.researchgate.net/profile/Alberto-Ballesteros-3

Vol 12 Issue 09, Sept 2023 ISSN 2456 – 5083 Page 64

III. ARCHITECTURAL REPRESENTATIONS

Centralized systems are frameworks that utilization

client/server design where at least one client hubs are

straightforwardly associated with a focal server. This is the

most ordinarily involved kind of framework in numerous

associations where a client sends a solicitation to an

organization server and gets the reaction.

Machine learning techniques have emerged as a promising

approach to enhance page memory management by

leveraging the ability of models to learn patterns and make

intelligent decisions. We discuss various machine

learning-based approaches, including prediction models,

reinforcement learning, and neural networks, and their impact

on improving memory allocation, reducing page faults, and

enhancing overall system performance.

Figure 1. Centralized Model.

 As mentioned in figure 1, Consider a huge server to which

we send our solicitations and the server answers with the

article that we mentioned. Assume we enter the hunt term 'low

quality food' in the Wikipedia search bar. This search term is

sent as a solicitation to the Wikipedia servers (generally

situated in Virginia, U.S.A) which then, at that point, answers

back with the articles in view of pertinence. In this present

circumstance, we are the client hub, Wikipedia servers are the

focal server.

Qualities of Unified Framework -

Presence of a worldwide clock: As the whole framework

comprises of a focal node(a server/an expert) and numerous

client nodes(a PC/a slave), all client hubs sync up with the

worldwide clock(the clock of the focal hub).

One single focal unit: One single focal unit which

serves/arranges the wide range of various hubs in the

framework.

Subordinate disappointment of parts: Focal hub

disappointment makes the whole framework come up short.

This seems OK since when the server is down, no other

element is there to send/get reactions/demands.

Scaling -

Just upward scaling on the focal server is conceivable. Flat

scaling will go against the single focal unit normal for this

arrangement of a solitary focal element.

Can't increase upward after a specific cutoff - After a

breaking point, regardless of whether you increment the

equipment and programming capacities of the server hub, the

exhibition won't increment obviously prompting an

expense/benefit proportion < 1.

Bottlenecks can seem when the traffic spikes - as the server

can have a limited number of open ports to which can pay

attention to associations from client hubs. In this way, when

high traffic happens like a shopping deal, the server can

basically experience a Forswearing of-Administration assault

or Conveyed Disavowal of-Administration assault.

Simple to get truly. It is not difficult to get and support the

server and client hubs by righteousness of their area

Smooth and rich individual experience - A client has a

devoted framework which he uses(for model, a PC) and the

organization has a comparable framework which can be

changed to suit custom necessities. Committed assets

(memory, computer chip centers, and so forth) More expense

Vol 12 Issue 09, Sept 2023 ISSN 2456 – 5083 Page 65

productive for little frameworks up to a specific breaking

point - As the focal frameworks take less assets to set up, they

have an edge when little frameworks must be fabricated.

Speedy updates are conceivable - Just a single machine to

refresh. Simple separation of a hub from the framework.

Simply eliminate the association of the client hub from the

server and presto! Hub withdrew.

Concentrated control: In a unified framework, the focal

authority has unlimited authority over the framework, which

can prompt better coordination and direction.

Simpler to make due: As there is just a single focal hub to

make due, it is more straightforward to keep up with and deal

with the framework. Lower idleness: Concentrated

frameworks can give lower dormancy contrasted with

appropriated frameworks as there is no defer in

correspondence between various hubs .Better execution:

Unified frameworks can accomplish better execution as the

assets can be upgraded for explicit undertakings.

Less complex execution: Concentrated frameworks are

more straightforward to carry out as they require less

perplexing calculations and conventions.

Weaknesses of Incorporated Framework -

Exceptionally reliant upon the organization availability -

The framework can come up short on the off chance that the

hubs lose network as there is just a single focal hub.

No effortless debasement of the framework - unexpected

disappointment of the whole framework

Less chance of information reinforcement. In the event that

the server hub falls flat and there is no reinforcement, you lose

the information straight away

Troublesome server upkeep - There is just a single server

hub and because of accessibility reasons, it is wasteful and

amateurish to bring the server down for support. In this way,

refreshes must be finished on-the-fly(hot refreshes) which is

troublesome and the framework could break.

Weak link: Incorporated frameworks have a weak link,

which can make the whole framework come up short in the

event that the focal hub goes down.

Absence of straightforwardness: Unified frameworks need

straightforwardness as the focal authority has unlimited

oversight over the framework, which can prompt issues like

control and inclination.

Security chances: Concentrated frameworks are more

powerless against security gambles as the focal authority has

total admittance to every one of the information.

Restricted versatility: Brought together frameworks have

restricted versatility as the focal hub can deal with a

predetermined number of clients all at once. Restricted

development: Concentrated frameworks can smother

advancement as the focal authority has unlimited oversight

over the framework, which can restrict the extension for trial

and error and innovativeness.

Uses of Brought together Framework -

Application improvement - Exceptionally simple to set up a

focal server and send client demands. Current innovation

these days really do accompany default test servers which can

be sent off with several orders. For instance, Express server,

Django server. Information examination - Simple to do

information investigation when every one of the information

is in one spot and accessible for examination

Individualized computing concentrated data sets - every

one of the information in one server for use. Single-player

games like Requirement For Speed, GTA Bad habit City - a

whole game in one system(commonly, a PC) Application

improvement by conveying test servers prompting simple

troubleshooting, simple arrangement.

Vol 12 Issue 09, Sept 2023 ISSN 2456 – 5083 Page 66

Figure 2. DeCentralized Model

 However, as shown in figure 2, It is feasible to scale

vertically. Each hub has the ability to add resources

(hardware, programming) to create the exhibition, which

prompts an expansion in the presentation of the entire

framework.

Decentralized Framework Design -

Shared design – all hubs are close pals. No hub is superior

to other hubs incomparably. One hub can become an expert

by voting and assisting in the organization of a component of

the framework, but this does not imply that the hub has

superior qualities to the other hub that it is planning.

IV. PROPOSEFD WORK

Problem Statement:

What structure and components are required in a

distributed real-time embedded system?

What different protocols and techniques can be used to

develop a DRE system?

 How does the middleware handle the coordination of the

system?

 How should the middleware be constructed in order to

maintain high scalability and transparency?

 There are a ton of viewpoints to be thought about while

building a middleware and the focal point of this proposition

is to act as need might have arisen in a dispersed constant

inserted framework. Taking advantage of how developer is

going can deal with the intricacy by embracing conventions

and methods that are appropriate for such a framework in the

middleware.

The compose support's hit percentage as well as the typical

size and quantity of bunches expelled to the Flash memory are

taken into consideration. The composing cushion for the

preceding techniques is a 4-MB RAM, and the subsequent

data is captured in the test section. It does all calculations in a

test system that is driven by results. With the number of

refresh squares set to 8, in accordance with the recent works,

the completely familiar area interpretation layer (FAST) [13]

is used as the interpretation layer of server client link.

According to the analysis, there are significant gaps between

the ideal methodology and the current approaches, indicating

that there is a lot of room for improvement. The gaps between

the ideal procedure and other approaches are depicted in this

picture.

V. PERFORMANCE COMPARISON

Delivery Factor: The number of messages that are left

unattended, the number of message loss is comparatively less

in the proposed SMB. This is because, the storage overflow is

prevented through optimal storage allocation and the

messages are categorized based on priority. Message drop

occurs when tw > tcd or tw > ted. In order to prevent overflow,

the priority messages are emptied first followed by the non

real-time messages. The number of messages dropped is less

as the operation of the appliances is paused when pa → 0 and

also the EMU notifies about the power availability to the

Distributed Embedded device. User messages are also

restricted by sending passive acknowledgement therefore

unnecessary storage overflow and unattended messages are

controlled.

Ratio Devices

Feasibil

ity

5 *

N

45

5 *

N

106

7 *

N

1540

0 * N

GEL 29 39 45 52

DESD 29 39 46 53

MESD 29 40 47 53

MISD 31 45 53 66

Vol 12 Issue 09, Sept 2023 ISSN 2456 – 5083 Page 67

 Figure 3: Delivery Factor of various techniques

As shown in figure 4, The number of serviced messages is

almost equal to the number of service requests, maximizing

the delivery factor in the proposed work

Lifetime: The lifetime of the Distributed Embedded gadget

regarding the quantity of solicitations took care of in a day is

noticed for SMB and contrasted and the current techniques in

figure 5. The activities of the gadget incorporate update of

sense and delay records, administration sending and

recognizing. These tasks are not intermittent rather it depends

on the machine and power accessibility. The activity of the

gadget is additionally constrained by EMU through ideal

updates in regards to dad. Subsequently, the gadget is kept

Table 1: Comparison of Distributed frameworks

from performing superfluous or intermittent tasks. Besides,

the machines associate with the following accessible gadgets

in the event of a disappointment, guaranteeing consistent

help. This works on the quantity of dynamic gadgets with held

measure of energy that draws out the tasks of the gadget

somewhat higher than the current methodologies.

The dispersed working and common correspondence

between the gadgets control the tasks in the Distributed

Embedded climate to hold a higher lifetime of the device

Figure 5: Efficiency of various frameworks

VI. CONCLUSION

The framework is simultaneousness straightforward to the

clients if the instrument of simultaneousness dealing with is

stowing away from the clients. This infers that a client doesn't

have to deal with the simultaneousness clashes in the event

that there is more than one application getting tosimilar

shared assets in the framework. The middleware ought to

determine such clashes. In the event that a framework is

simultaneousness straightforward, the application doesn't

have to know the number of uses that are having similar

assets. By this straightforwardness, the framework likewise

safeguards itself from unlawful access of assets made by

application, as the application ought to have no control on

direct getting to and locking of the assets. The

simultaneousness clashes ought to be dealt with by the

middleware yet not the application..

 VIII. REFERENCES

[1] D. Harnik, E. Khaitzin, D. Sotnikov, and S. Taharlev.

A Fast Implementation Of Deflate. In DCC. IEEE Computer

Society, 2014.

[2] L. Shi, C. J. Xue, J. Hu, W.-C. Tseng, X. Zhou, and E.

H.-M. Sha, “Write activity reduction on flash main memory

via smart victim cache,” in Proc. 20th Symp. Great Lakes

Very Large Scale Integr. Syst., 2014, pp. 91–94.

[3] Radu Stoica and Anastasia Ailamaki. Improving flash

write performance by update frequency. Proc. VLDB

Endow., 6(9):733–744, July 2013.

[4] Tola John Odule and Idowun Ademola Osinuga,

“Dynamically Self- Adjustin Cache Replacement

Algorithm”, International Journal of Future Generation

Communication and Networking, Vol. 6, No. 1, Feb. 2013.

[5] Benny Van Houdt. A mean field model for a class of

garbage collection in flash-based solid state drives. In

Proceedings of SIGMETRICS /InternationalConference on

Measurement and Modeling of Computer Systems, 2013.

Vol 12 Issue 09, Sept 2023 ISSN 2456 – 5083 Page 68

[6] Saurabh Gao, Hongliang Gao and Huiyang Zhou,

"Adaptive Cache Bypassing for Inclusive Last Level Caches",

IEEE 27th International Symposium on & Distributed

Processing (IPDPS), pp. 1243-1253, 2013.

 [7] Liang Shi, Jianhua Li, Chun Jason Xue, and Xuehai

Zhou, "Co operating Virtual Memory and Write Buffer

Management for flash storage systems”, IEEE transactions

On Very Large Scale Integration (VLSI) Systems, Vol. 21,

No. 4, April 2013.

[8] Daniel A Jimenez, "Insertion and promotion for

tree-based Pseudo LRU last- caches", 46th Annual

IEEE/ACM International Symposium on Micro architecture,

pp. 84-296, 2013.

[9] Fazal Hameed, Lars Bauer and Jorg Henkel,

"Adaptive cache management for a combined SRAM and

DRAM cache hierarchy for MAQD", Design, & Test in

Europe Conference & Exhibition (DATE), pp. 77-82, 2020.

[10] Young-Sik Lee, Sang-Hoon Kim, Jin-Soo Kim,

Jaesoo Lee, Chanik Park, and Seungryoul Maeng 2013 IEEE

29th Symposium on, pages 1–13,May 2013.

[11] Cristian Ungureanu, Biplob Debnath, Stephen Rago

and Akshat Aranya, "TBF: memory-efficient replacement

policy for flash-based caches", IEEE 29th International

Conference on In Data Engineering (ICDE), pp. 1117-1128,

2013

[12] Yingying Tian, Samira M. Khan and Daniel A.

Jimenez, "Temporal-based Multilevel correlating inclusive

cache replacement", ACM Transactions on Architecture and

Code Optimization (TACO), Vol. 10, No. 4, Article. 33, 2013

[13] Tripti Warrier S, B. Anupama and Madhu Mutyam,

"An application-aware replacement policy for last-level

caches", Architecture of Computing Systems–ARCS,

Springer Berlin Heidelberg, pp. 207-219, 2013.

	I. INTRODUCTION
	II. RelATED WORK
	Title " Reconfiguration Strategies for Critical Adaptive Distributed Embedded Systems”" Authors: Adam Ballest., Johnson, A., Brown, M. Conference/Journal: IEEE Distributed System, 2020
	III. Architectural representations
	IV. Proposefd Work
	V. Performance Comparison
	VI. Conclusion

