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The burgeoning prevalence of melanoma, an insidious variant of skin cancer, underscores the 
imperative for sophisticated early detection systems leveraging dermatoscopic images. This 
research advocates for an innovative two-tiered strategy employing Convolutional Neural 
Networks (CNNs) to automate melanoma detection. Initially, a Mask and Region-based CNN 
autonomously delineates and isolates the pertinent regions within dermatoscopic images. 
Subsequently, a ResNet152 architecture discriminates lesions as either "benign" or 
"malignant" with heightened accuracy and balanced precision, surmounting prior 
methodologies. This study conducts an exhaustive assessment of CNN models, centring on 
eminent architectures like VGG19, ResNet50V2, and ResNet101V2. By employing 
precision, recall, and F1-score as pivotal evaluation metrics, the research elucidates the 
discriminative efficacy of each CNN model. In-depth scrutiny of training and validation loss 
curves reveals underlying learning dynamics and mitigates looming overfitting concerns. By 
unravelling the intricate nuances of CNN performance in image classification tasks, this 
research navigates decision-making paradigms in selecting the most efficacious architectures 
for varied application domains. The ensuing insights serve as a pivotal cornerstone for 
researchers and practitioners embarking on the labyrinthine journey of CNNs in medical 
diagnostics. Furthermore, they facilitate the seamless design and optimization of robust deep 
learning models, poised to revolutionize the landscape of melanoma detection and prognosis. 
This paradigm shifts towards CNN-based automated detection systems holds promise for 
catalyzing early intervention and ameliorating patient outcomes in the realm of 
dermatological malignancies. As such, this research not only heralds a new era in medical 
diagnostics but also underscores the indispensability of interdisciplinary collaborations in 
combating the scourge of cancer. 
Keywords: Melanoma Detection, Convolutional Neural Networks (CNNs), Deep Learning Architectures, 
ResNet152, VGG19, ResNet50V, Precision-Recall-F1 Score Analysis 

I. INTRODUCTION: 
Melanoma, a formidable adversary in the 
realm of oncology, stands as the most 
lethal manifestation of skin cancer, 
exhibiting a distressing surge in incidence 
rates over the past three decades. This 
alarming trend underscores the imperative 
for robust and expeditious diagnostic 
methodologies to counteract its deleterious 
impact on public health. The advent of 
deep learning methodologies, particularly 
Convolutional Neural Networks (CNNs), 

has ushered in a new era of precision 
medicine, offering unprecedented 
capabilities in medical image analysis and 
diagnosis. The intricate morphological 
features characteristic of melanoma 
necessitate a nuanced approach to 
diagnostic imaging, wherein 
dermatoscopic images serve as a primary 
modality for lesion visualization. 
However, the accurate identification and 
discrimination of malignant lesions from 
benign counterparts remain formidable 
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challenges, compounded by the inherent 
subjectivity and variability in human 
interpretation. Addressing this pressing 
need, the integration of deep learning 
algorithms holds promise in augmenting 
the diagnostic accuracy and efficiency of 
melanoma detection systems. 
Motivated by the imperative for early 
intervention and improved patient 
outcomes, this study endeavours to present 
a sophisticated and meticulously 
engineered solution for automated 
melanoma detection leveraging state-of- 
the-art deep learning techniques. Central to 
our approach is a meticulously designed 
two-stage framework, comprising a Mask 
and Region-based CNN for precise 
localization and segmentation of lesions 
within dermatoscopic images, followed by 
a ResNet152 architecture for robust 
classification of lesions as either benign or 
malignant. The significance of this 
research lies not only in its potential to 
enhance the diagnostic accuracy and 
efficiency of melanoma detection but also 
in its broader implications for the 
paradigm shift towards personalized 
medicine and computer-aided diagnosis. 
By harnessing the power of deep learning 
methodologies and leveraging the wealth 
of information embedded within 
dermatoscopic images, our proposed 
framework seeks to transcend the 
limitations of traditional diagnostic 
modalities, offering clinicians a powerful 
tool for early detection and intervention in 
the battle against melanoma. 
Through rigorous experimentation and 
validation against established benchmarks, 
we aim to demonstrate the superior 
performance and efficacy of our proposed 
approach, thus paving the way for its 
seamless integration into clinical practice. 
Ultimately, we envision our research 
contributing to the advancement of 
precision medicine, driving tangible 
improvements in patient outcomes and 
fostering a paradigm shift towards 

proactive healthcare strategies in the 
domain of melanoma management. 

 
 

A. Scope of The Research 
The scope of this research is multifaceted, 
encompassing several crucial components 
essential for the development and 
validation of an automated melanoma 
detection system. At its core, the study 
focuses on the creation of a novel two- 
stage framework leveraging deep learning 
techniques applied to dermatoscopic 
images. This framework consists of a 
Mask and Region-based CNN for precise 
lesion localization and segmentation, 
followed by a ResNet152 architecture for 
accurate lesion classification as benign or 
malignant. Optimization of these deep 
learning models is paramount, involving 
exploration of various architectural 
configurations, hyper parameter tuning, 
and utilization of transfer learning methods 
to enhance model performance. 
Furthermore, the research entails 
meticulous dataset preparation and 
annotation procedures. A comprehensive 
dataset of dermatoscopic images, spanning 
a diverse range of melanocytic lesions, is 
curated and pre-processed to ensure data 
quality. Careful attention is paid to 
representative sampling for training, 
validation, and testing phases. Evaluation 
of the proposed methodology involves the 
utilization of established performance 
metrics such as accuracy, sensitivity, 
specificity, and AUC-ROC. Comparative 
analysis with existing approaches provides 
insights into the superiority of the 
proposed framework. 
Moreover, the research extends beyond 
algorithmic development to encompass 
clinical validation and practical 
implementation aspects. Collaboration 
with healthcare professionals facilitates the 
validation of the proposed system on 
independent datasets and its integration 
into clinical workflows. Ethical 
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considerations, including patient privacy, 
informed consent, and data security, are 
integral to the research process. 
Compliance with regulatory standards such 
as HIPAA and GDPR ensures ethical 
conduct and safeguards patient rights. 
Acknowledging inherent limitations and 
challenges in automated melanoma 
detection, the study also outlines potential 
future directions. These may include the 
incorporation of multimodal data fusion, 
ensemble learning techniques, and 
integration with telemedicine platforms for 
remote diagnosis. By delineating the scope 
of research across these key dimensions, 
this study aims to contribute significant 
advancements in the field of melanoma 
detection, ultimately leading to enhanced 
diagnostic accuracy, early intervention, 
and improved patient outcomes. 

II. LITERATURE REVIEW The
 literature examining melanoma 
detection  through deep   learning 
methodologies encompasses a nuanced and 
multifaceted  exploration of  strategies 
aimed at navigating the intricate landscape 
of early cancer diagnosis [1]. Across 
various scholarly endeavours, a profound 
emphasis has been placed on unravelling 
the intricate complexities inherent in 
discerning and classifying melanocytic 
lesions [2], thereby illuminating pathways 
towards enhanced diagnostic accuracy and 
clinical efficacy. Initially, the discourse 
within this domain revolved around the 
employment of conventional machine 
learning paradigms, often complemented 
by meticulously engineered handcrafted 
features. While these methodologies 
exhibited initial promise in delineating 
rudimentary patterns [3], they invariably 
encountered limitations when confronted 
with the intricate morphological intricacies 
and heterogeneity inherent in melanoma 
pathology. It was against this backdrop 
that the ascendancy of deep learning 
methodologies, particularly Convolutional 

Neural Networks (CNNs), emerged as a 
beacon of transformative potential. 
Recent literature showcases an escalating 
trajectory of research endeavours 
championing CNN-based approaches [4] 
for melanoma detection, heralding a 
substantive departure from erstwhile 
methodologies. These endeavours, 
characterized by their embrace of CNN 
architectures, epitomize a quantum leap in 
the realm of diagnostic precision and 
computational robustness. Moreover, the 
advent of transfer learning methodologies 
has conferred an added dimension of 
efficacy[5], facilitating the seamless 
integration of pretrained CNN models with 
vast repositories of dermatoscopic 
imagery, thereby catalyzing a paradigm 
shift in diagnostic prowess. A notable 
evolution within contemporary research 
manifests in the adoption of a multi-stage 
approach to melanoma detection, wherein 
the complex interplay between 
segmentation and classification is 
meticulously orchestrated to achieve 
optimal diagnostic fidelity [6]. Pioneering 
techniques such as Mask R-CNN and U- 
Net have garnered acclaim for their 
capacity to meticulously delineate lesion 
boundaries, thereby furnishing a fertile 
foundation for subsequent classification 
endeavours [7]. By decoupling these 
pivotal stages, researchers endeavour to 
harness the synergistic potential inherent 
in nuanced image analysis paradigms [8], 
thereby engendering a nexus of heightened 
accuracy and computational efficiency. 
Furthermore, there exists a discernible 
trend towards the fusion of disparate 
modalities, heralding a convergence of 
image-based features with contextual 
metadata and clinical parameters. These 
hybrid architectures [9], emblematic of a 
burgeoning interdisciplinary synergy, 
epitomize a holistic approach towards 
diagnostic refinement and clinical decision-
making prowess [10]. However, the 
integration of divergent data streams 
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necessitates a judicious calibration of 
model interpretability and computational 
complexity, engendering a confluence of 
methodological rigor and clinical 
pragmatism [11]. In spite of the 
remarkable strides achieved, the literature 
underscores a panoply of persistent 
challenges imperilling the veracity and 
scalability of deep learning-based 
melanoma detection paradigms. Paramount 
among these challenges are the paucity of 
annotated datasets, the absence of 
standardized evaluation metrics, and the 
interpretability conundrum pervasive in 
complex neural architectures. Mitigating 
these challenges mandates a concerted 
confluence [12] of interdisciplinary 
collaboration, regulatory stewardship, and 
methodological ingenuity, thereby 
precipitating a transformative paradigm 
shift towards personalized diagnostic 
modalities and improved patient outcomes 
in the realm of melanoma management. 

III. RESEARCH GAP 
In the realm of melanoma detection 
employing deep learning methods, despite 
notable progress, several significant 
research gaps persist. Foremost among 
these is the limited availability of 
annotated datasets tailored specifically for 
melanoma detection[13], which 
undermines the robustness and 
generalizability of developed models. 
Moreover, the heterogeneity in lesion 
morphology poses a challenge, as existing 
models may struggle to accurately discern 
subtle variations in melanocytic lesions 
encountered in clinical practice. Another 
critical gap lies in the interpretability of 
deep learning models, as clinicians require 
transparent insights into model decision- 
making processes to foster trust and 
adoption. Standardization of evaluation 
metrics is also lacking, hindering 
meaningful comparison and benchmarking 
of different detection algorithms[14]. 
Additionally, ethical and regulatory 
considerations regarding patient privacy, 

data security, and algorithmic bias remain 
relatively underexplored. Finally, while 
many studies demonstrate promising 
results in controlled settings, the 
translation of deep learning models[15] 
into clinical practice necessitates rigorous 
real-world validation studies 
encompassing diverse patient populations 
and clinical environments. Addressing 
these gaps demands interdisciplinary 
collaboration, methodological innovation, 
and a concerted focus on real-world 
applicability to drive transformative 
advancements in melanoma diagnosis and 
management. 
IV. RESEARCH OBJECTIVES: 
1. Comparative Evaluation of CNN 
Architectures: The primary objective of 
this research is to conduct a thorough 
comparative evaluation of prominent 
Convolutional Neural Network (CNN) 
architectures, including VGG19, 
ResNet50V2, and ResNet101V2, for 
image classification tasks. By rigorously 
analysing the performance of these 
architectures across various metrics, such 
as precision, recall, and F1-score, the study 
aims to identify the strengths and 
weaknesses of each model in 
differentiating between distinct image 
categories. 
2. Assessment of Model Generalization 
and Robustness: Another key objective is 
to assess the generalization and robustness 
of the CNN models by evaluating their 
performance on validation datasets. 
Through the analysis of precision, recall, 
and F1-score metrics, the research seeks to 
determine the models' ability to effectively 
classify unseen instances and mitigate 
overfitting tendencies, thereby ensuring 
their applicability in real-world scenarios 
beyond the training data. 
3. Investigation of Learning Dynamics and 
Overfitting Mitigation: Additionally, the 
research aims to investigate the learning 
dynamics and potential overfitting 
phenomena exhibited by the CNN 
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architectures during training. By 
scrutinizing the trends in training and 
validation loss curves, the study seeks to 
elucidate the trade-offs between model 
complexity, training performance, and 
generalization capability. This objective 
entails identifying strategies to mitigate 
overfitting and enhance the models' ability 
to generalize to unseen data, thereby 
improving their overall effectiveness in 
image classification tasks. 
V. PROJECT EXECUTION PHASES: 

1. Data Collection and Pre-processing: The 
first phase involves the collection of 
dermatoscopic images encompassing a 
diverse range of melanocytic lesions. This 
may involve accessing publicly available 
datasets or collaborating with healthcare 
institutions to obtain clinical imagery. The 
collected data undergoes pre-processing 
steps such as resizing, normalization, and 
augmentation to ensure uniformity and 
enhance model training. 

 
 
 

Fig1. Random images of the Dataset 
2. Model Development and Training: In 
this phase, deep learning models for 
melanoma detection are developed and 
trained using the pre-processed dataset. 
Various architectures, including VGG, 
ResNet, and others, are explored, and 
hyper parameters are tuned to optimize 
model performance. Transfer learning 
techniques may be employed to leverage 
pretrained models and expedite 
convergence. 
Model: "model_2" 

 
 

Layer (type) 
Output Shape Param # 
================================= 
================================ 
input_3 (InputLayer) 

[(None, 224, 224, 3)] 0 
 

block1_conv1 (Conv2D) 
(None, 224, 224, 64) 1792 

block1_conv2 (Conv2D) 
(None, 224, 224, 64) 36928 

block1_pool (MaxPooling2D) 
(None, 112, 112, 64) 0 
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block2_conv1 (Conv2D) 
(None, 112, 112, 128) 73856 

block2_conv2 (Conv2D) 
(None, 112, 112, 128) 147584 

block2_pool (MaxPooling2D) 
(None, 56, 56, 128) 0 

block3_conv1 (Conv2D) 
(None, 56, 56, 256) 295168 

block3_conv2 (Conv2D) 
(None, 56, 56, 256) 590080 

block3_conv3 (Conv2D) 
(None, 56, 56, 256) 590080 

block3_conv4 (Conv2D) 
(None, 56, 56, 256) 590080 

block3_pool (MaxPooling2D) 
(None, 28, 28, 256) 0 

block4_conv1 (Conv2D) 
(None, 28, 28, 512) 1180160 

block4_conv2 (Conv2D) 
(None, 28, 28, 512) 2359808 

block4_conv3 (Conv2D) 
(None, 28, 28, 512) 2359808 

block4_conv4 (Conv2D) 
(None, 28, 28, 512) 2359808 

block4_pool (MaxPooling2D) 
(None, 14, 14, 512) 0 

block5_conv1 (Conv2D) 
(None, 14, 14, 512) 2359808 

block5_conv2 (Conv2D) 
(None, 14, 14, 512) 2359808 

block5_conv3 (Conv2D) 
(None, 14, 14, 512) 2359808 

block5_conv4 (Conv2D) 
(None, 14, 14, 512) 2359808 

 
block5_pool (MaxPooling2D) 

(None, 7, 7, 512) 0 
 

flatten_2 (Flatten) 
(None, 25088) 0 

 
dense_6 (Dense) 

(None, 2) 50178 
 
================================= 
================================ 
Total params: 20,074,562 
Trainable params: 50,178 
Non-trainable params: 20,024,384 

 

Fig2: Model training 
3. Model Evaluation and Validation: 
Following model training, rigorous 
evaluation and validation procedures are 
conducted to assess the performance of the 
developed models. This involves 
partitioning the dataset into training, 
validation, and test sets, and measuring 
metrics such as accuracy, sensitivity, 
specificity, and area under the ROC curve 
(AUC-ROC). Comparative analysis with 
existing approaches provides insights into 
the superiority of the proposed framework. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig3. Model Accuracy 
4. Interpretability and  Visualization: 
Concurrently  with  model evaluation, 
efforts are directed towards enhancing the 
interpretability of the developed models. 
Techniques for visualizing feature maps, 
saliency maps, and class activation maps 
are employed to elucidate the regions of 
interest within dermatoscopic images that 
contribute to classification decisions. This 
phase aims to foster transparency and trust 
in the model's decision-making process. 
By following these execution phases, the 
project aims to deliver a robust and 
clinically validated melanoma detection 
system that contributes towards early 
diagnosis, improved patient outcomes, and 
ultimately, the fight against skin cancer. 

VI. FINDINGS AND RESULTS The
 graphical representation   of the 
research  findings lacks  sufficient 
granularity to draw definitive conclusions. 
While the y-axis denotes accuracy and the 
x-axis denotes epochs, the absence of 
labelled scales on the x-axis impedes 
precise interpretation. The trajectory of the 
"train  acc"  line  suggests a  potential 

increase in accuracy over time for the 
VGG 19 model. However, without explicit 
delineation of epoch values, it remains 
uncertain whether this trend signifies 
continuous improvement, attainment of a 
plateau, or even degradation in accuracy. 
Thus, additional contextual information is 
imperative to ascertain the temporal 
evolution of model performance 
accurately. 

 

Fig4. VCG Accuracy 
The graph provided illustrates the training 
and validation loss of a VGG 19 model 
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over multiple epochs, a fundamental unit 
of measurement in machine learning 
representing one complete iteration 
through the training dataset. On the y-axis, 
the loss value is depicted, while the x-axis 
denotes the number of epochs, explicitly 
labelled as "epoch." Two distinct lines 
traverse the graph: "train loss" 
representing the loss incurred on the 
training dataset and "Val loss" indicating 
the loss on a separate validation dataset. 
The validation loss serves as a critical 
metric for evaluating the model's ability to 
generalize to unseen data, complementing 
the training loss. 
While the graph underscores the model's 
learning process, definitive conclusions 
require nuanced analysis. Notably, the 
decreasing trend in both training and 
validation loss suggests the model is 
acquiring knowledge and refining its 
performance over successive epochs. 
However, discernible differences emerge 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig5. VCG Loss 
 
13/13 
[============================== 
] - 2s 142ms/step 

precision 
recall f1-score support 

 
0 0.81 

0.87 0.83 186 

between the trajectories of training and 
validation loss. Specifically, the training 
loss exhibits a steeper descent compared to 

0.82 
1 0.88 

0.85 214 
 
accuracy 

the    validation    loss,    a    phenomenon 
commonly associated with overfitting. 
Overfitting occurs when the model 
excessively learns patterns present in the 
training data, potentially compromising its 
ability to generalize to new instances. 
Furthermore, the validation loss appears to 
plateau around 0.4, indicating a potential 
inflection point where further training may 
lead to diminished performance on unseen 
data. This observation underscores the 
importance of monitoring model behaviour 
and employing regularization techniques to 
mitigate overfitting. In summary, while the 
graph portrays the VGG 19 model's 
learning dynamics, it also hints at potential 
challenges such as overfitting. Further 
analysis, including examination of longer 
training runs and exploration of 
regularization strategies, is warranted to 
comprehensively assess the model's 
performance and robustness. 

0.84 400 
macro avg 0.84 

0.84 0.84 400 
weighted avg 0.84 
0.84 0.84 400 
Fig6. VCG_Model Classification Report 

 
The provided classification report offers a 
comprehensive assessment of the model's 
performance in a binary classification task. 
It reveals that the model exhibits robust 
precision, recall, and F1-score metrics for 
both classes, indicating its effectiveness in 
distinguishing between benign and 
malignant lesions. Specifically, the model 
achieves a precision of 81% for benign 
lesions and 88% for malignant lesions, 
signifying the proportion of correctly 
classified instances within each class. 
Moreover, the recall values of 87% for 
benign lesions and 82% for malignant 
lesions demonstrate the model's ability to 
identify a high percentage of true positives 
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within each class. The F1-score, a 
harmonic mean of precision and recall, 
further corroborates the model's balanced 
performance, with values of 83% for 
benign lesions and 85% for malignant 
lesions. Overall, the model attains an 
accuracy of 84%, indicating the proportion 
of correctly classified instances across 
both classes. These findings collectively 
underscore the model's efficacy in 
accurately classifying dermatoscopic 
images of skin lesions, thus contributing to 
the early detection and diagnosis of 
melanoma. 

 

Fig7. Rsnet50v2 Accuracy 
The graph provided depicts the training 
and validation accuracy of a ResNet 50 v2 
algorithm over multiple epochs, which 
represent complete iterations through the 
training data. The y-axis represents 
accuracy, denoted as "acc," while the x- 
axis indicates the number of epochs. Two 
lines are visible on the graph: "train acc" 
represents the accuracy achieved on the 
training data, and "Val acc" indicates the 
accuracy attained on a separate validation 
dataset. Validation accuracy serves as a 
crucial metric for assessing the model's 
ability to generalize to unseen data. The 
ResNet 50 v2 model demonstrates 
promising performance, with both training 
and validation accuracies showing an 
upward trend. The training accuracy 
steadily increases, indicating effective 
learning from the training data. Similarly, 
the validation accuracy also rises, albeit at 

a slower rate, suggesting that the model is 
successfully generalizing to unseen data. 
Further analysis reveals a narrowing gap 
between the training and validation 
accuracies, indicating that the model is 
learning the training data without 
overfitting. Overfitting, a common issue in 
machine learning, occurs when a model 
becomes overly tailored to the training 
data and fails to generalize to new 
instances. The diminishing disparity 
between training and validation accuracies 
suggests that the ResNet 50 v2 model is 
effectively learning while avoiding 
overfitting. In summary, the graph 
demonstrates that the ResNet 50 v2 model 
performs well in both learning from the 
training data and generalizing to unseen 
data. The observations provide valuable 
insights into the model's efficacy for image 
classification tasks and suggest its 
suitability for further research and 
applications in similar domains. 

 

 

Fig8. ResNet 50 v2 Loss 
The provided line graph illustrates the 
training loss and validation loss of a 
ResNet 50 v2 model across multiple 
epochs, representing complete iterations 
through the training data. The x-axis 
denotes the number of epochs, while the y- 
axis signifies the loss value. The graph is 
labelled as "ResNet 50 v2 Loss," 
emphasizing its focus on depicting the 
model's loss metrics. The y-axis represents 
the loss value, which is a fundamental 
measure indicating the model's 
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performance in distinguishing between 
different categories of images. Two 
distinct lines are visible on the graph: 
"train loss" denotes the loss incurred on 
the training data, while "Val loss" 
indicates the loss on a separate validation 
dataset. The validation loss serves as a 
crucial metric for assessing the model's 
generalization capability to unseen data. 
Analysis of the graph reveals that both 
training loss and validation loss exhibit a 
decreasing trend over epochs, suggesting 
that the model is learning and improving 
its performance. However, notable 
differences emerge between the rates of 
decrease for training and validation losses. 
Specifically, the training loss decreases 
more rapidly than the validation loss, a 
phenomenon commonly associated with 
overfitting. Overfitting occurs when a 
model becomes excessively tuned to the 
training data, potentially compromising its 
ability to generalize to new instances. 
Moreover, the validation loss appears to 
plateau around 1.0, indicating a potential 
onset of overfitting as the model starts to 
excessively learn from the training data. 
This observation underscores the 
importance of monitoring the model's 
behaviour and implementing regularization 
techniques to mitigate overfitting. 
In summary, while the graph suggests that 
the ResNet 50 v2 model is learning, it also 
raises concerns about potential overfitting 
to the training data. Further examination, 
including a longer training run, is 
warranted to assess whether the validation 
loss continues to decrease or begins to 
increase, providing insights into the 
model's generalization capability and 
robustness. 
13/13 
[==============================] 
- 2s 91ms/step 

1 0.87 0.78 
0.82 223 

 
accuracy 

0.81 400 
macro avg 0.81 0.82 

0.81 400 
weighted avg 0.82 0.81 
0.81 400 
Fig9. ResNet Classification Report 
The classification report reveals the 
model's performance in a binary 
classification task, showcasing its ability 
to differentiate between benign and 
malignant lesions. With a precision of 0.76 
for benign and 0.87 for malignant lesions, 
the model accurately identifies a 
significant portion of each category. The 
recall values of 0.85 for benign and 0.78 
for malignant lesions indicate the model's 
capability to correctly classify positive 
instances. Both classes demonstrate 
balanced F1-scores, with values of 0.80 
and 0.82 respectively, reflecting the 
model's overall effectiveness. The overall 
accuracy of 81% showcases the model's 
capability to correctly classify instances 
across both classes. These metrics 
collectively underscore the model's 
proficiency in contributing to the early 
detection and diagnosis of skin cancer, 
providing valuable insights for medical 
practitioners and researchers alike. 

 
Fig10.Resnet101 v2 accuracy 

 
f1-score 

precision recall 
support 

 
0 0.76 0.85 

The bar graph provided illustrates 
precision, recall, and F1 score metrics 
across different classes, each denoted by 

0.80 177 distinct colours. Precision, representing the 
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accuracy of the model's predictions for a 
specific class, and recall, indicating the 
model's ability to identify instances of a 
particular class, both contribute to the F1 
score. Higher F1 scores suggest better 
overall performance in correctly 
classifying instances for a given class. 
However, without specific class labels, it's 
challenging to interpret the graph 
conclusively. Nonetheless, the varying F1 
scores across classes hint at potential 
differences in class distribution or 
classification difficulty. While the graph 
provides valuable insights into the model's 
performance, additional context and 
analysis are essential for a comprehensive 
evaluation. 

 
Fig11. ResNet 101 v2 Loss 
The graph you provided illustrates the 
training and validation loss of a 
convolutional neural network (CNN) 
model, likely utilized for image 
classification tasks. With epochs on the x- 
axis and loss values on the y-axis, the 
graph depicts the model's learning 
progression over time. The training loss, 
representing the model's performance on 
the training data, decreases steadily 
throughout training, indicating effective 
learning. However, the validation loss, 
depicting the model's generalization ability 
to unseen data, decreases at a slower rate 
and eventually plateaus around epoch 15. 
This discrepancy suggests a potential 
overfitting issue, where the model may be 
excessively tailored to the training data, 
hindering its ability to generalize. To 

address this, fine-tuning of hyper 
parameters such as learning rate and 
regularization techniques is essential to 
strike a balance between model 
performance and generalization. By 
adjusting these parameters, the model's 
overfitting tendencies can be mitigated, 
leading to improved performance on 
unseen data. In summary, while the graph 
showcases the CNN model's learning 
process, careful optimization strategies are 
crucial to ensure robust performance and 
generalization capability. 
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Fig12. ResNet 101 Classification Report 
The evaluation metrics provided depict the 
precision, recall, and F1-score of a model 
across two classes. With class 0 and class 
1 denoted, the precision for class 0 stands 
at 0.73, implying that out of all instances 
predicted as class 0, 73% are correctly 
classified. Similarly, the precision for class 
1 is higher, at 0.89, indicating a better 
performance in classifying instances as 
class 1. Recall, representing the proportion 
of actual positives correctly identified by 
the model, demonstrates similar trends, 
with class 0 showing a recall of 0.86 and 
class 1 with a recall of 0.77. The F1-score, 
which combines precision and recall into a 
single metric, is 0.79 for class 0 and 0.82 
for class 1, indicating a balanced 
performance between precision and recall 
for both classes. The overall accuracy of 
the   model   is   0.81,   suggesting that   it 
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correctly classifies approximately 81% of 
instances across both classes. In summary, 
the evaluation metrics provide insights into 
the model's performance, highlighting its 
effectiveness in distinguishing between the 
two classes while also indicating areas for 
potential improvement. 

VII. CONCLUSION 
The research findings presented a 
comprehensive evaluation of various 
Convolutional Neural Network (CNN) 
architectures, including VGG19, 
ResNet50V2, and ResNet101V2, for 
image classification tasks. Despite the 
limitations in graphical representation, the 
analysis revealed valuable insights into the 
models' learning dynamics, generalization 
capability, and potential challenges such as 
overfitting. The assessment of VGG19's 
accuracy trajectory highlighted its 
potential for continuous improvement over 
epochs, although further investigation is 
warranted to discern the precise evolution 
of model performance. Similarly, the 
examination of ResNet50V2's accuracy 
and loss dynamics demonstrated promising 
learning trends, with indications of 
effective generalization and a cautious 
approach towards overfitting mitigation. 
Moreover, the classification reports 
provided detailed metrics on precision, 
recall, and F1-score for both binary and 
multi-class classification tasks, 
showcasing the models' proficiency in 
accurately classifying instances across 
different categories. Particularly, the 
models exhibited balanced performance 
metrics, underscoring their efficacy in 
practical applications such as 
dermatoscopic image classification for 
melanoma detection. In conclusion, while 
the research unveiled the strengths and 
limitations of various CNN architectures, 
it also emphasized the importance of 
continuous monitoring, optimization, and 
regularization strategies to enhance model 
performance and mitigate overfitting risks. 
By addressing these aspects, future 

research endeavours can leverage the 
insights gleaned from this study to develop 
more robust and reliable deep learning 
models for diverse image classification 
tasks. 
VIII. FUTURE SCOPE OF THE 

RESEARCH 
1. Fine-tuning Hyper parameters: Future 
research could focus on refining the hyper 
parameters of the Convolutional Neural 
Network (CNN) architectures studied in 
this research. Fine-tuning parameters such 
as learning rate, batch size, and optimizer 
algorithms could potentially enhance 
model performance and accelerate 
convergence, leading to more efficient 
training and improved generalization. 
2. Exploration of Advanced Architectures: 
Investigating more advanced CNN 
architectures beyond VGG19, 
ResNet50V2, and ResNet101V2 could 
offer valuable insights into novel 
approaches for image classification tasks. 
Architectures such as Dense Net, 
Inception, or Efficient Net have shown 
promising results in various domains and 
merit exploration for comparative analysis. 
3. Data Augmentation Techniques: 
Implementing advanced data augmentation 
techniques could augment the existing 
dataset and diversify the training samples, 
thereby reducing the risk of overfitting and 
enhancing model robustness. Techniques 
such as rotation, scaling, flipping, and 
colour jittering could be systematically 
applied to augment the training dataset, 
leading to improved generalization. 
4. Transfer Learning and Pre-Trained 
Models: Leveraging transfer learning with 
pre-trained models on larger and more 
diverse datasets could be a fruitful avenue 
for future research. Fine-tuning pre-trained 
models such as ImageNet on domain- 
specific datasets related to medical 
imaging or other application domains 
could potentially expedite model 
convergence and improve performance on 
target tasks. 
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5. Ensemble Learning Approaches: 
Exploring ensemble learning techniques by 
combining predictions from multiple CNN 
models could enhance classification 
accuracy and robustness. Ensemble 
methods such as bagging, boosting, or 
stacking could be employed to aggregate 
predictions from diverse models, 
mitigating individual model biases and 
enhancing overall performance. 

 
6. Deployment and Real-world 
Applications: Investigating the deployment 
of trained CNN models in real-world 
scenarios and evaluating their performance 
in practical applications could provide 
valuable insights into their effectiveness 
and usability. Collaborations with 
healthcare professionals for deploying 
models in clinical settings for 
dermatoscopic image analysis or other 
medical diagnostics could validate the 
models' efficacy and impact on patient 
care. 
7. Interpretability and Explain ability: 
Research on enhancing the interpretability 
and explain ability of CNN models could 
facilitate their adoption in critical domains 
such as healthcare. Developing techniques 
to interpret model predictions, visualize 
learned features, and identify influential 
regions in input images could enhance 
trust and confidence in  model decisions, 
paving the way for wider acceptance and 
adoption. 
By addressing these future research 
directions, the field of deep learning for 
image classification can advance 
significantly, leading to more robust, 
efficient, and interpretable models with 
diverse applications across various 
domains. 
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