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ABSTRACT- Real-time operation systems 

(RTOS) have become very important to the 

development of autonomous mobile robots. 

The choice of RTOS has tremendous sway 

with processor utilization, response time, and 

real-time jitter. In this paper, we present 

experimental trials and analyze the feasibility 

of RTOS on a single-board computer for 

image recognition and vision-based 

navigation of small autonomous robot. 

Several real-time (RT) patches Linux 

frequently used not only in robotics are 

implemented and tested on the Raspberry Pi2 

equipped with a native camera board. To 

study the speed of image recognition 

(classification) OpenCV library was used. 

Test results show that the RT Patch Linux can 

produce higher throughput compared to 

Xenomai, but it can be seen that RT systems 

almost did not affect the speed of static 

images recognition systems almost did not 

affect the speed of image recognition 

INTRODUCTION 

Single-board computers are gaining 

increasing popularity due to their size, with 

the result that they are widely used in 

robotics. But for the short form factor, you 

have to pay weak technical characteristics. 

Vision-based navigation is one of the crucial 

tasks that robotics address. Many factors are 

imposing practical limitations on a robot’s
ability to see, learn and explore the 

environment. For this reason, navigation in 

unknown or partially unknown environments 

remains one of the biggest challenges in 

today's autonomous mobile robots 

implemented on single board computers [1]. 

This task requires a sufficiently large number 

of capacities, and to solve it in a single-board 

computer we should use all possible 

potential. To date, there are various ways of 

improving computer performance for a 

particular task. One of the possible solutions 

is to utilize of real-time (RT) systems, where 

compliance with specific time limits is very 

important, but, along with this, the overall 

system performance may decrease. Thus, the 

developer is faced with the hard choices of 

using real-time systems to dealing with 

performance or accuracy in image 

recognition and vision-based navigation. 

Objectives of this research are to study and 

use a real-time operating system (RTOS), 

Linux and their patches on a Raspberry Pi 

single board computer and to perform its 

further implementation in a small 

autonomous mobile robot equipped with the 

camera module and IR sensor. The purpose 

of the article is to investigate the feasibility of 

using real-time operating systems (RTOS) on 

a single-board computer for image 

recognition and vision-based navigation of 

small autonomous robot. Achieving this goal 

requires the following tasks: • testing and 
estimating the delay of real-time systems to 

improve recognition efficiency during cyclic 

(continuous) operation; • assessment of the 
quality and speed of classification of images. 
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The main contribution of this work is adding 

knowledge, experience, and insight about 

RT-patched Linux as an RTOS for vision-

based navigation of small autonomous 

robots, implemented on Raspberry Pi single 

board computer, comparing time-delays in 

RT-systems, their influence on image 

recognition and further usage raw sensory 

data for dynamic robot navigation; to 

develop, implement and producing a small 

autonomous system based on RTOS. 

LITERATURE SURVEY 

The current task joins three areas related to 

the realtime systems; they are dynamic 

navigation for mobile robots, machine vision 

and real-time image recognition, and real-

time operating systems evaluation 

Dynamic navigation for mobile robots is 

explored in a large number of publications. 

Thus, Habib [1] presented a state-of-the-art in 

map building and localization for mobile 

robots navigating within an unknown 

environment. The deep reinforcement 

learning technique for robot navigation in 

unknown rough terrain is proposed in [2]. 

They used elevation maps and high 

dimensional sensory data from depth images 

to perform robot navigation through rough 

terrain. They are also categorized existing 

work on dynamic navigation into two groups 

that focus on classification technique and 

learning technique 

Paper [3] includes a comprehensive 

classification of vision systems for ground 

mobile robots. The modern sensing systems 

of intelligent robots are discussed in [4]. A 

real-time image recognition system for tiny 

autonomous mobile robots is discussed in [5]. 

Mahlknecht et al. proposed an object 

recognition algorithm based on a 

combination of edge and color detection and 

used a fixed model for each recognizing 

object. Objects classification technique for 

mobile robots is presented in [6]. Mobile 

robot navigation using a neural network for 

image classification is also discussed in [7, 8, 

9]. Visual image processing technique based 

on OpenCV for a mobile robot is presented in 

[10]. A framework for image processing on a 

Raspberry Pi platform is proposed in [11]. As 

it mentioned in [12], evolutionary adaptation 

is one of the most important functions for the 

mobile robot navigating in the unknown, 

unstructured environment. At the same time, 

one of the most challenging tasks in 

navigation is real-time communication and 

control. In this context, researchers turn to the 

subject of measuring and evaluating real-time 

performance in robotic applications. Thus, 

the real-time performance of UDP based 

communications in Linux on multicore 

embedded devices is evaluated in [13]. 

Results of analysis and benchmarking 

performance of real-time patch Linux and 

Xenomai are presented in [14]. Marieska et 

al. compare both RTOS based on three 

performance metrics: processing time, jitter, 

and throughput. The performance of RTOS 

on a single board computer for a wheeled 

mobile robot with the ultrasonic sensor is 

analyzed in [15]. Achieved results showed 

that RTOS with Qt-based program enables 

the robot to respond less than 1 second. In this 

paper, we try to extend the awareness of 

RTOS performance on a single board 

computer for classification tasks and vision-



 

 

 

Volume 13 Issue 12 Dec 2024                                  ISSN 2456 – 5083                            Page 618 

 

based navigation of small autonomous 

mobile robots. 

M. K. Habib. “Real Time Mapping and 

Dynamic Navigation for Mobile Robots,” 
International Journal of Advanced 

Robotic Systems, (September 2007). 

doi:10.5772/5681 

This paper discusses the importance, the 

complexity and the challenges of mapping 

mobile robot’s unknown and dynamic 

environment, besides the role of sensors and 

the problems inherited in map building. 

These issues remain largely an open research 

problems in developing dynamic navigation 

systems for mobile robots. The paper 

presenst the state of the art in map building 

and localization for mobile robots navigating 

within unknown environment, and then 

introduces a solution for the complex 

problem of autonomous map building and 

maintenance method with focus on 

developing an incremental grid based 

mapping technique that is suitable for real-

time obstacle detection and avoidance. In this 

case, the navigation of mobile robots can be 

treated as a problem of tracking geometric 

features that occur naturally in the 

environment of the robot. The robot maps its 

environment incrementally using the concept 

of occupancy grids and the fusion of multiple 

ultrasonic sensory information while 

wandering in it and stay away from all 

obstacles. To ensure real-time operation with 

limited resources, as well as to promote 

extensibility, the mapping and obstacle 

avoidance modules are deployed in parallel 

and distributed framework. Simulation based 

experiments has been conducted and 

illustrated to show the validity of the 

developed mapping and obstacle avoidance 

approach An autonomous mobile robot is 

required to wander around and explore its 

environment without colliding with any 

obstacles for the purpose to fill its mission by 

executing successfully an assigned task, and 

to survive by affording the possibility of 

finding energy sources and avoid dangerous 

hazards. To efficiently carry out complex 

missions, autonomous robots need to learn 

and maintain a model of their environment. 

The acquired knowledge through learning is 

used to build an internal representation. 

Knowledge differs from information in that it 

is structured in long-term memory and it is 

the outcome of learning. In order to enable an 

autonomous mobile robot to navigate in 

unknown or changing environment and to 

update in real-time the existing knowledge of 

robot’s surroundings, it is important to have 

an adaptable representation of such 

knowledge and maintain a dynamic model of 

its environment. Navigation in unknown or 

partially unknown environments remains one 

of the biggest challenges in today's 

autonomous mobile robots. Mobile robot 

dynamic navigation, perception, modeling, 

localization, and mapping robot’s 

environment have been central research 

topics in the field of developing robust and 

reliable navigation approach for autonomous 

mobile robots. To efficiently carry out 

complex missions in indoor environments, 

autonomous mobile robots must be able to 

acquire and maintain models of their 

environments. Robotic mapping addresses 

the problem of acquiring spatial models of 

physical environments through mobile robots 

and it is generally regarded as one of the most 

important problems in the pursuit of building 
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truly autonomous mobile robots. Acquiring 

and mapping unstructured, dynamic, or large-

scale environments remains largely an open 

research problem. (Kuipers & Byun, 1991; 

Thrun & Bucken, 1996; Murphy, 2000; 

Thrun, 2002). Building maps of unknown 

and dynamic environment is an essential 

probem in robotics and requires taking care 

of connected problems other than mapping 

itself, such as localization, sensor 

uncertainty, obstacle avoidance and real-time 

navigation. There are many factors imposing 

practical limitations on a robot’s ability to 

learn and use accurate models. The 

availability of efficient mapping systems to 

produce accurate representations of initially 

unknown environments is undoubtedly one 

of the main requirements for autonomous 

mobile robots. A key component of this task 

is the robot’s ability to ascertain its location 

in the partially explored map or to determine 

that it has entered new territory. Accurate 

localization is a prerequisite for building a 

good map, and having an accurate map is 

essential for good localization (Se et al., 

2002; Choset, 2001). All robots, which do not 

use pre-placed landmarks or GPS, must 

employ a localization algorithm while 

mapping an unknown space. Therefore, 

accurate simultaneous localization and 

mapping (SLAM) represents a critical factor 

for successful mobile robot dynamic 

navigation in a large and complex 

environment because it enables the robot to 

function autonomously, intelligently, 

purposefully, and robustly. The term SLAM 

was first coined by Leonard and Durrant-

Whyte (Leonard & Durrant-Whyte, 1991) to 

describe a technique used by robots and 

autonomous vehicles to build up a map 

within unknown environment while at the 

same time keeping track of its current 

position. This technique has attracted 

immense attention in the mobile robotics 

literature and has been applied successfully 

by many researchers (Leonard & Durrant-

Whyte, 1991; Se et al., 2002; Choset & 

Nagatani, 2001). SLAM has not yet been 

fully perfected, but it is starting to be 

employed in unmanned aerial vehicles, 

autonomous underwater vehicles, planetary 

rovers, and newly emerging domestic robots. 

All the numerous methods proposed in 

literature are based on some sort of 

incremental integration: a newly acquired 

partial map is integrated with the old maps. 

To integrate the partial map obtained at each 

sensing step into the global map of the 

environment, the localization of the robot is 

fundamental. To perform localization, it 

needs to estimate both robot’s pose and 

obstacles positions are needed. Map building 

in an unknown and dynamic environment has 

been under study for a long time and many 

different approaches have been developed 

and evaluated (Borenstien & Koren, 1991a; 

Thrun & Bucken, 1996; Singhal, 1997; 

Borenstien & Ulrich, 1998; Murphy, 2000; 

Ellore, 2002). Other important issues related 

to navigation of an autonomous mobile robot 

are the need to deal with moving 

obstacles/objects, and fusing sensory 

information from multiple heterogeneous 

and/or homogeneous sensors. These issues 

usually cannot be resolved through the use of 

conventional navigation techniques. During 

real time simultaneous map building and 

localization, the robot is incrementally 

conducting distance measurements. At any 

iteration of map building the measured 
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distance and direction traveled will have a 

slight inaccuracy, and then any features being 

added to the map will contain corresponding 

errors. If unchecked, these positional errors 

build cumulatively, grossly distorting the 

map and therefore affect the robot's ability to 

know its precise location. One of the greatest 

difficulties of map building arises from the 

nature of the inaccuracies and uncertainties in 

terms of noise in sensor measurements, 

which often lead to inaccurate maps. If the 

noise in different measurements is 

statistically independent, a robot can simply 

take multiple measurements to cancel out the 

effects of the noise. But, the measurement 

errors are statistically dependent due to 

odometry errors that accumulate over time 

and affect the way that future sensor 

measurements are interpreted. Small 

odometry errors can have large effects on 

later position estimates. There are various 

techniques to compensate for this such as 

recognizing features that the robot has come 

across previously and re-skewing recent parts 

of the map to make sure the two instances of 

that feature become one. For the last decade 

the field of robot mapping has been 

dominated by probabilistic techniques for 

simultaneously solving the mapping problem 

and the induced problem of localizing the 

robot relative to its growing map and 

accordingly different approaches have been 

evolved. The first category includes 

approaches that employ Kalman filter to 

estimate the map and the robot location (Lu 

& Milios, 1997; Castellanos & Tardos, 1999; 

Thrun, 2002). Another approach is based on 

Dempster’s expectation maximization 

algorithm (Thrun, 2001; Thrun, 2002). This 

category specifically addresses the 

correspondence problem in mapping, which 

is the problem of determining whether sensor 

measurement recorded at different points in 

time correspond to the same physical entity 

in the real world. The Extended Kalman 

Filter (EKF) has been the de facto approach 

to the SLAM problem. However, the EKF 

has two serious deficiencies that prevent it 

from being applied to large, real-world 

environments: quadratic complexity and 

sensitivity to failures in data association. An 

alternative approach called Fast-SLAM is 

based on the RaoBlackwellized Particle 

Filter, and can scale logarithmically with the 

number of landmarks in the map 

(Montemerlo & Thrun, 2003). The other 

category of approaches seeks to identify 

objects and landmarks in th environment, 

which may correspond to ceilings, walls, 

doors, furniture and other objects that move. 

For the last two decades, there has been made 

tremendous progress in the development of 

efficient and highly accurate map building 

techniques. Most of these techniques focus 

either on capturing the metric layout of an 

environment with high accuracy (Moravec & 

Elfes, 1985; Moravec, 1988; Elfes, 1989a; 

Elfes, 1989b; Borenstien & Koren, 1991a and 

b; Borenstien & Koren, 1998; Ribo & Pinz, 

2001; Ellore, 2002), or on representing the 

topological structure of an environment 

(Habib & Yuta, 1988; Kuipers & Byun, 1991; 

Habib & Yuta, 1993; Kuipers, 2000; Choset 

& Nagatani, 2001). To acquire a map and 

achieve efficient simultaneous localization, 

robots must possess sensors that enable them 

to perceive the outside world. There are 

different types of sensor modalities 

commonly brought to bear for this task such 

as ultrasonic, laser range finders, radar, 
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compasses, vision, infrared, tactile sensors, 

etc. However, while most robot sensors are 

subjected to strict range limitations, all these 

sensors are subject to errors, often referred to 

as measurement noise. Laser scanning 

system is active, accurate but slow. Vision 

systems are passive and of high resolution but 

it demands high computation Ultrasonic 

range finders are common in mobile robot 

navigation due to their simplicity of 

operation, high working speed and cheap but 

usually they are very crude. These sensors 

provide relative distances between them and 

surrounding obstacles/objects located within 

their radiation cone. However, these devices 

are prone to several measuring errors due to 

various phenomena, such as, multiple 

reflections, wide radiation cone, and low 

angular resolution. Robot motion is also 

subject to errors, and the controls alone are 

therefore insufficient to determine a robot’s 

pose relative to its environment. Hence, one 

of the main problems in SLAM is coming 

from the uncertainty in the estimated robot 

pose. This uncertainty creates correlation 

between the robot pose and the estimated 

map. Maintaining such a correlation 

increases computational complexity. This 

characteristic of SLAM makes the algorithm 

hard to apply to estimate very dense maps due 

to the computational burden. This paper 

discusses the importance, the complexity and 

the challenges of mapping robot’s unknown 

and dynamic environment, besides the role of 

sensors and the problems inherited in map 

building. These issues remain largely an open 

research problem in developing an 

autonomous navigation system for mobile 

robots. The paper introduces an autonomous 

map building and maintenance method with 

focus on having an incremental grid based 

mapping technique that is suitable for real-

time obstacle detection and avoidance. The 

robot maps its environment incrementally 

while wandering in it and staying away from 

all obstacles. In this case, the navigation of 

mobile robots can be treated as a problem of 

tracking geometric features that occur 

naturally in the environment. This 

implementation uses the concept of 

occupancy grids and a modified 

Histogrammic In-Motion Mapping (HIMM) 

algorithm to build and maintain the 

environment of the robot by enabling the 

robot to recognize and track the elements of 

the occupancy grid in real-time. In parallel to 

this, the incrementally built and maintained 

map model is integrated directly to support 

dynamic navigation and obstacle avoidance 

in real time. Simulation based experiments 

has been conducted and illustrated to show 

the validity of the developed mapping and 

obstacle avoidance approach 

K. Zhang, F. Niroui, M. Ficocelli, and G. 

Nejat. “Robot Navigation of Environments 

with Unknown Rough Terrain Using Deep 

Reinforcement Learning” Available: 

http://asblab.mie.utoronto.ca/sites/default

/files/SSRR18_0040_FI 

In Urban Search and Rescue (USAR) 

missions, mobile rescue robots need to search 

cluttered disaster environments in order to 

find victims. However, these environments 

can be very challenging due to the unknown 

rough terrain that the robots must be able to 

navigate. In this paper, we uniquely explore 

the first use of deep reinforcement learning 

(DRL) to address the robot navigation 

problem in such cluttered environments with 
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unknown rough terrain. We have developed 

and trained a DRL network that uses raw 

sensory data from the robot’s onboard 

sensors to determine a series of local 

navigation actions for a mobile robot to 

execute. The performance of our approach 

was successfully tested in several unique 3D 

simulated environments with varying sizes 

and levels of traversability Mobile rescue 

robots deployed in Urban Search and Rescue 

(USAR) missions must navigate unknown 

rough terrain in order to explore cluttered 

environments to search for potential victims 

[1]. However, the traversability of the rough 

terrain can vary greatly, consisting of 

different rubble piles with various shapes and 

sizes. In order to be able to perform semi-

autonomously or fully autonomously, these 

robots need to find navigation paths to safely 

navigate in these cluttered environments with 

unknown terrain with no a priori map of the 

environment.  Previous work in robot 

navigation of rough terrain has mainly 

focused on known terrain [2]. A feasible path 

to a goal location in the environment can be 

determined using such techniques as graph 

search [3], rapidly exploring random trees [4] 

and potential field methods [5], [6]. In cases 

when the terrain is unknown, the robot can 

navigate to multiple local target locations 

using a defined utility function [7]–[11]. By 

navigating to these local locations, the robot 

can therefore progress towards the final goal 

location. For a number of these approaches, 

the robot also obtains a model of the 

environment, e.g. [7]–[10]. The challenge 

with such approaches is that they can require 

substantial expert input for parameter tuning 

[12] In order to address this issue, learning 

techniques have been proposed for robot 

navigation in rough terrain [12]–[18]. These 

techniques focus on learning to classify the 

traversability of terrain from environment 

features. In particular, learning is used to 1) 

classify the surrounding terrain which is then 

represented as a costmap  [13], [16]–[18] or 

2) to learn the overall cost function [12], [14], 

[15], in order to plan optimal paths to goal 

locations.  Our own previous research has 

focused on utilizing traditional learning 

methods (e.g. MAXQ hierarchical 

reinforcement learning, support vector 

machines)  and utility function based 

approaches to address such tasks as 

exploration, rough terrain navigation, and 

victim identification [19]–[22]. However, to 

effectively train learning techniques, usually 

a large number of labeled data is required, 

which can be time consuming to obtain [23]. 

A handful of techniques [13], [18] have 

automated the process of data collection and 

labeling by having the robot directly interact 

with the environment in order to assign a 

class to a set of online captured data.     In this 

research, we investigate the use of deep 

reinforcement learning (DRL) to address the 

robot navigation problem in environments 

with unknown rough terrain, in particular in 

USAR scenarios. DRL can directly use raw 

sensory data to determine robot navigation 

actions without the need of pre-labeled data 

[24]. A handful of papers have applied DRL 

approaches for robot navigation using 

onboard sensory information in 

environments with known [25]–[27] and 

unknown [28] flat terrain. However, DRL has 

yet to be implemented for cluttered 

environments with unknown rough terrain.  

In USAR missions, we have areas of interest 

with high likelihoods of victims being 
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present. A rescue robot needs to navigate to 

these regions, in order to search for victims. 

For the robot navigation problem addressed 

in this paper, these areas are defined as goal 

target locations for the robot. Namely, we are 

addressing the local navigation problem, 

where the goal target locations can be given 

by a global exploration planner such as in 

[29], and the robot needs to locally navigate 

to these locations without previous 

knowledge of the unknown rough terrain. 

Such a scenario would be after a natural 

disaster such as an earthquake, when a 

building has collapsed and the terrain at this 

site is unknown a priori, however, a rescue 

robot needs to navigate the environment to 

help search for victims In this paper we 

present the first use of DRL to address the 

mobile robot navigation problem in unknown 

rough terrain such as in USAR environments. 

The main contribution of this work is in the 

design of a DRL network which uses raw 

sensory data from the robot’s onboard 

sensors to determine a series of primitive 

navigation actions for the robot to execute in 

order to traverse to a goal location in an 

environment with unknown rough terrain. 

J. Martinez-Gomez, A. Fernandez-

Caballero, I. Garcia-Varea, L. Rodriguez, 

and C. Romero-Gonzalez. “A Taxonomy 

of Vision Systems for Ground Mobile 

Robots.”International Journal of 

Advanced Robotic Systems, (July 2014). 

doi:10.5772/58900 

This paper introduces a taxonomy of vision 

systems for ground mobile robots. In the last 

five years, a significant number of relevant 

papers have contributed to this subject. 

Firstly, a thorough review of the papers is 

proposed to discuss and classify both past and 

the most current approaches in the field. As a 

result, a global picture of the state of the art 

of the last five years is obtained. Moreover, 

the study of the articles is used to put forward 

a comprehensive taxonomy based on the 

most up-to-date research in ground mobile 

robotics. In this sense, the paper aims at being 

especially helpful to both budding and 

experienced researchers in the areas of vision 

systems and mobile ground robots. The 

taxonomy described is devised from a novel 

perspective, namely in order to respond to the 

main questions posed when designing robotic 

vision systems: why?, what for?, what with?, 

how?, and where? The answers are derived 

from the most relevant techniques described 

in the recent literature, leading in a natural 

way to a series of classifications that are 

discussed and contextualized. The article 

offers a global picture of the state of the art in 

the area and discovers some promising 

research lines A mobile robot is an automatic 

machine that is capable of movement in any 

given environment. Unlike industrial robots, 

which usually consist of a jointed arm (multi-

linked manipulator) and a gripper assembly 

(or end-effector) that is attached to a fixed 

surface, mobile robots are able to move 

around in their environment. Therefore, they 

are not fixed to one physical location. 

Specifically, a ground mobile robot (GMR) is 

a robotic platform that operates while being 

in contact with the ground and which does not 

rely upon on-board human presence. GMRs 

are used in many applications where the 

presence of a human operator may be 

inconvenient, dangerous or even impossible. 

Generally, the robot incorporates a set of 

sensors to perceive the environment and 
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either makes decisions autonomously or pass 

the information on to a remote human 

operator who controls the robot via 

teleoperation. In both cases (autonomous and 

teleoperated GMRs), the more information 

that is provided, the better the decisions that 

are made. While a teleoperated GMR relies 

on humans for decision-making, autonomous 

robots need to incorporate artificial 

intelligence (AI) capabilities to perform this 

process. In this sense, AI has been roughly 

divided into two schools of thought since its 

beginnings: symbolic and sub-symbolic. 

These two approaches have also had a strong 

influence on the robotics field [1]. For robotic 

systems to navigate through an environment, 

autonomous planning and deliberation offer a 

number of examples. In these kinds of tasks, 

an accurate environmental representation is 

needed. The representation can be adequately 

obtained using a computer or machine vision 

system, which provides the robot with the 

relevant information about the environment 

and its current state. Visual perception plays 

a fundamental role in the behaviour of human 

beings. Unfortunately, robots still do not 

’see’ as humans do. To date, no robot has 

been able to replicate any of the fundamental 

human abilities. For example, jointly 

coordinating ’eyes’ and ’hands’, which 

provides flexibility, dexterity and strength in 

movement, is not yet possible in robotics at 

present. Moreover, humans usually rely upon 

their sense of sight to locate, identify (both 

static and moving) and follow objects (or 

even track extremity movements). Vision is 

also crucial in grabbing and manipulating 

objects, allowing these tasks to be performed 

quickly and reliably. As a consequence, these 

capabilities are especially helpful when 

developing robotic systems able to 

successfully address the types of tasks 

mentioned above. In general, vision in 

robotics primarily refers to the ability of a 

robot to visually perceive the environment. 

Compared to the classical definition of 

computer visions, robotic vision has to go 

further in order to accomplish tasks entrusted 

to robotic platforms. These tasks typically 

involve: navigating to a specific location 

while avoiding obstacles; finding agents 

(either humans or other robots) while 

interacting with them; locating, classifying 

and manipulating objects in the scene, and so 

on. Thus, the goal of robot vision is to exploit 

the power of visual perception to adequately 

perceive the environment aimed at while 

being able to properly react to it. In contrast 

to computer vision, where sensing is an 

isolated task and most efforts focus on the 

scene comprehension and object recognition, 

robot vision involves dealing with all the 

internal components/modules available in the 

platform. In other words, in robot vision, 

sensing is driven by global tasks where all the 

system modules play their part [2]. This 

allows the robot to perceive the environment 

in order to interact with it appropriately. 

Vision has been used in robotics applications 

for more than 30 years. Some examples 

include applications in industrial settings, 

services, medicine and underwater robotics, 

to name a few. In this paper, the proposals for 

robot vision from the last five years for 

GMRs are reviewed. Moreover, a taxonomy 

of vision systems for GMRs is proposed in 

studying the most recent journal articles. In 

this sense, the following main questions 

addressed in this paper have led to the 

proposed taxonomy (see Fig. 1): (a) ’why’ is 
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a vision system incorporated into a GMR?, 

(b) ’what’ physical components are needed in 

such a vision system?, (c) ’for what purpose’ 
are vision systems used in GMRs?, (d) ’how’ 
is a vision system for GMRs to be 

developed?, and (e) ’where’ should a vision 

system for GMRs be exploited? All these 

questions are answered by discussing some 

of the most influential examples from the last 

few years. 

IMPLEMENTATION 

BLOCK DIAGRAM 

 

POWER SUPPLY 

A regulated power supply transforms 

unregulated AC (Alternating Current) into a 

stable DC (Direct Current). It guarantees 

consistent output despite variations in input. 

A regulated DC power supply is also known 

as a linear power supply, it is an embedded 

circuit and consists of various blocks 

• Regulated Power Supply 

Definition: A regulated power supply 

ensures a consistent DC output by 

converting fluctuating AC input. 

• Component Overview: The primary 

components of a regulated power 

supply include a transformer, 

rectifier, filter, and regulator, each 

crucial for maintaining steady DC 

output. 

• Rectification Explained: The 

process involves diodes converting 

AC to DC, typically using full wave 

rectification to enhance efficiency. 

• Filter Function: Filters, such as 

capacitor and LC types, smooth the 

DC output to reduce ripple and 

provide a stable voltage. 

• Regulation Mechanism: Regulators 

adjust and stabilize output voltage to 

protect against input changes or load 

variations, essential for reliable 

power supply 

SENSORS 

Sensors are used for sensing things and 

devices etc. A device that provides a usable 

output in response to a specified 

measurement. The sensor attains a physical 

parameter and converts it into a signal 

suitable for processing (e.g. electrical, 

mechanical, optical) the characteristics of 

any device or material to detect the presence 

of a particular physical quantity. The output 

of the sensor is a signal which is converted to 

a human-readable form like changes in 

characteristics, changes in resistance, 

capacitance, impedance, etc. 

What is HC-SR04 Ultrasonic Sensor: 

The HC-SR04 ultrasonic sensor includes a 

transmitter & a receiver. This sensor is used 

to find out the distance from the objective. 

Here the amount of time taken to transmit and 

receive the waves will decide the distance 

between the sensor and an object. This sensor 

uses sound waves by using non-contact 

technology. By using this sensor the distance 

https://www.electrical4u.com/alternating-current/
https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.elprocus.com/ultrasonic-detection-basics-application/
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which is required for the target can be 

measured without damage and provides 

accurate details. The range of this sensor 

available between 2cms to 400cms. 

What is the HC-SR04 Ultrasonic Sensor? 

The HC-SR04 is a type of ultrasonic sensor 

which uses sonar to find out the distance of 

the object from the sensor. It provides an 

outstanding range of non-contact detection 

with high accuracy & stable readings. It 

includes two modules like ultrasonic 

transmitter & receiver. This sensor is used in 

a variety of applications like measurement of 

direction and speed, burglar alarms, medical, 

sonar, humidifiers, wireless charging, non-

destructive testing, and ultrasonography. 

 
Fig: HCSR04-ultrasonic-sensor 

Color Sensor  

White light is a mixture of three basic colors 

known as primary colors. They are red, blue 

and green. These colors have different 

wavelengths. Combinations of these colors at 

different proportions create different types of 

colors. When the white light falls on any 

surface, some of the wavelengths of the light 

are absorbed by the surface while some are 

reflected back based on the properties of the 

surface material. Colour of the material is 

detected when these reflected wavelengths 

fall on the human eye. A material reflecting 

wavelengths of red light appears as red. The 

component used to detect colors is the Color 

sensor. 

 

 

What is a Color Sensor? 

A color sensor detects the color of the 

material. This sensor usually detects color in 

RBG scale. This sensor can categorize the 

color as red, blue or green. These sensors are 

also equipped with filters to reject the 

unwanted IR light and UV light. 

 
Fig: Color-Sensor 

RPI –PICO 

A Raspberry Pi Pico is a low-cost 

microcontroller device. Microcontrollers are 

tiny computers, but they tend to lack large 

volume storage and peripheral devices that 

you can plug in (for example, keyboards or 

monitors). 

A Raspberry Pi Pico has GPIO pins, much 

like a Raspberry Pi computer, which means it 

can be used to control and receive input from 

a variety of electronic devices 

Raspberry Pi Foundation is well known for 

its series of single-board computers 

(Raspberry Pi series). But in January 2021 
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they launched their first micro-controller 

board known as Raspberry Pi Pico. 

It is built around the RP2040 Soc, a very fast 

yet cost-effective microcontroller chip 

packed with a dual-core ARM Cortex-

M0+ processor. M0+ is one of the most 

power-efficient ARM processorRaspberry Pi 

PICO board 

 

Fig: Raspberry Pi Pico Board 

Raspberry Pi Pico is a small, fast, and 

versatile board that at its heart consists 

of RP2040, a brand-new product launched by 

Raspberry Foundation in the UK. It can be 

programmed 

using MicroPython or C language. 

CONCLUSION As a result of the study, it 

can be seen that RT systems almost did not 

affect the speed of image recognition. Slight 

fluctuations in performance are due to the 

peculiarity of core patches and the 

displacement of secondary processes, but, as 

a rule, in the robotics system, the system is 

not limited to static recognition, but is used 

for cyclic work. Judging by the histograms, 

real-time systems have low cycles of delay, 

indicating a sufficient level of resource 

planning, so these systems can be used in 

downloaded cyclic processes, including in 

cyclic image recognition. The kernel delay 

using the Xenomai framework turned out to 

be less good than expected, possibly due to 

the kernel configuration or a defect in the 

testing process. Therefore, in order to 

increase the cyclic accuracy of the 

recognition task on single-board computers, 

it is possible to recommend the use of the 

PREEMPT_RT patch, which has the lowest 

cyclic delay and gives little advantage over 

the recognition speed. Regarding the quality 

of the classification, we can assume that the 

OpenCV library and the prepared neural 

network managed to do well. On the first 

sample, the neural network really found the 

castle (probability 89%) and the rock (4%), 

and the second white wolf (63%). 
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