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ABSTRACT 

This research aspires to fill the void by suggesting a novel approach to dealing with the ever-

evolving dangers posed by the internet. Minimizing the impact of cyber assaults requires 

timely identification and prevention of breaches. Due to the time it takes to analyze network 

data, traditional intrusion detection systems generally fail to identify threats in real time. The 

goal of this research is to create an effective system that can scan network packets quickly, 

spot abnormalities, and trigger alarms or preventative measures in real time. In order to keep 

up with the increasing sophistication of cyber threats, intrusion prevention and detection 

systems must also advance. The system is able to continually adapt to new situations, 

recognize new risks, and generate accurate forecasts thanks to the combination of artificial 

intelligence and machine learning. The goal of this research is to create a self-improving, 

self-protecting system that can anticipate and prevent novel forms of attack, including zero-

day vulnerabilities. Maintaining operations and safeguarding private data depend critically on 

the reliability of the underlying computer network. The purpose of this research is to 

strengthen computer networks by creating a reliable intrusion detection and prevention 

system. If implemented, the suggested system would safeguard against data breaches, keep 

network resources secure, and prevent unwanted access. 

KEYWORDS: Attack Traffic, cyber threats, detection systems, self-protecting system. 

INTRODUCTION 

Module I (HyFSA-HEIC) of the proposed NIDPS and its methodology is provided in this 

chapter. This module's job is to figure out whether the incoming network communication is 

benign or malicious. To make the NIDS more reliable and effective in real time, it is 

recommended to cut down on the FPR, FNR, TBM, and TTM. The first module's (HyFSA-

HEIC) approach is outlined in four distinct parts. The first part of Module I (HyFSA-HEIC) 
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is its block diagram, which is shown below. In the last part, we analyze the experimental 

findings. In this last part, the chapter's key points are outlined. 

BLOCK DIAGRAM OF MODULE I (HyFSA-HEIC) 

In-depth discussion of the proposed Module I for intelligent light-weight accurate and 

efficient anomaly-based NIDS, HyFSA-HEIC, is presented here. Module I (HyFSA-HEIC) 

block diagram as shown in Figure 

It contains following 3 phases: 

Phase 1: Preprocessing of dataset 

Phase 2: Selection of features using HyFSA 

Phase 3: Model development using HEIC 

 

Figure 1: Block diagram of proposed Module I (HyFSA-HEIC) 

EXPERIMENTAL SETUP 

The feature selection strategies, classifiers, and ensembles used in this unit all make use of 

the software package Weka. Experiments will use the "10% KDD" and "Corrected Test". The 

requested module is implemented using the aforementioned steps. 

Phase 1: Preprocessing of dataset 

Normal and attack traffic detection have already been preprocessed on the "10% KDD" and 

"Corrected Test" datasets. There are 3 stages to this stage. 



Page 1718 ISSN 2456 – 5083 Vol 11 Issue 12, Dec 2022 

 
 
 
 

 
 

1) The first change is a renaming of the "attack" label on each record of an attack 

connection. 

2) As a consequence of the data reduction process, almost 70% of the original entries 

were deemed unnecessary. As a result, we are excluding these records from further analysis. 

The resulting "Uni KDD" and "Uni Corr" datasets. 

3) A training dataset ("Uni Train") and a test dataset ("Uni Test") are generated from 

"Uni KDD" by splitting it into two equal portions, each of which has 72793 entries. In the 

second phase, 6 features are chosen from the "Uni Train" and "Uni Test" datasets, and those 

datasets are reduced to form the "Red Uni Train" and "Red Uni Test" datasets. The "Uni 

Corr" and "Red Uni Corr" datasets are used for testing, with the former containing 41 

characteristics and the latter just six.  

Phase 2: Feature Selection using HyFSA 

Applying HyFSA on the "Uni KDD" dataset yields the 6 top features out of a total of 41 

features. Service, Src-bytes, Dst-bytes, Hot, Numcompromised, and Same-srv-rate are the 

feature numbers and names. 
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Phase 3: Model development using HEIC 

The HEIC is used in Module I (HyFSA-HEIC) to construct the normal or assault detection 

model.  

1) Classifiers to use in an ensemble are selected. Base classifiers for the ensemble are chosen 

to be the DT (C4.5), NB, NN-SGD, k-NN (k=3), RIPPER, and RF. The "Red Uni Train" 

dataset is used to train these classifiers. Comparisons are made using the TPR, FPR, ACC, 

PRE, ROC, TBM, TTM, and RMSE. Table 1 displays the outcomes of these classifiers on a 

6-feature training dataset. Out of 6 possible base classifiers, only NB, NN-SGD, RIPPER, DT 

(C4.5), and RF were chosen for use in the ensemble. The Ensemble and Combiner Method, 

Stage 2 

The heterogeneous ensemble is built using a parallel ensemble structure, with each of the five 

classifiers (NB, NN-SGD, RIPPER, DT (C4.5), and RF) being trained separately on the "Red 

Uni Train" dataset (6 features). After that, we apply the five laws of algebraic combination 

(Average, Product, Majority Voting, Minimum, and Maximum) to put together five different 

ensembles. Table 2 displays the evaluation metrics-based outcomes of these 5 ensemble 

models on the "Red Uni Train" dataset. 

EXPERIMENTAL RESULTS AND ANALYSIS 

Module I (HyFSA-HEIC) has been evaluated via a series of studies to determine its precision 

and efficiency. Weka is used for all experiments. Both the "Uni Train" and "Red Uni Train" 

datasets were used for training throughout the trials, while the "Uni Test" and "Red Uni Test" 

datasets were utilized for testing, along with the "Uni Corr" and "Red Uni Corr" datasets. 

TPR, FPR, ACC, PRE, ROC, TBM, TTM, and RMSE are utilized as performance measures 

in the studies. Table 3 displays the results of an evaluation of the classifiers on the test dataset 

"Red Uni Test" using TPR, FPR, ACC, PRE, ROC, TBM, TTM, and RMSE; Table 4 displays 

the results of the same evaluation for the datasets "Uni Corr" (41 features) and "Red Uni 

Corr" (6 features). Table 5 shows the results of 5 ensembles using 6 features from the "Red 

Uni Test" dataset, whereas Table 6 compares the results of 5 ensembles using 41 features 

from the "Uni Corr" dataset and 6 features from the "Red Uni Corr" dataset. 

Table 1: Experimental results of classifiers on training dataset (6 features) 
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Classifiers Evaluation Metrics 

TPR 

(%) 

FPR 

(%) 

ACC 

(%) 

PRE 

(%) 

ROC 

(%) 

TBM 

(sec) 

TTM 

(sec) 

RMSE 

(%) 

NB 95.1 6.1 95.12 95.2 99.2 0.45 1.61 21.97 

NN-SGD 97.2 3.7 97.16 97.2 96.7 170.56 1.61 16.86 

k-NN(k=3) 99.9 0.1 99.87 99.9 100 0.08 5087.73 3.09 

RIPPER 99.8 0.2 99.83 99.8 99.8 46.28 0.21 4.05 

C4.5 99.9 0.2 99.88 99.9 100 3.24 0.35 3.32 

RF 99.9 0.1 99.9 99.9 100 38.11 8.85 2.85 

Six classifiers and five ensembles are trained and evaluated using a total of six and forty-one 

characteristics, respectively. Then, 6 features are compared with 41 features across several 

evaluation measures, and the best classifiers and ensembles are determined.  

Table 2: Experimental results of ensemble on training dataset (6 features) 

Ensemble of 

Classifier 

Evaluation Metrics 

TPR 

(%) 

FPR 

(%) 

ACC 

(%) 

PRE 

(%) 

ROC 

(%) 

TBM 

(sec) 

TTM 

(sec) 

RMSE 

(%) 

Average 99.9 0.1 99.9 99.9 100 227.6 8.42 7.49 

Product 99.6 0.5 97.16 99.6 98.3 227.12 9.91 6.14 

Majority Voting 99.9 0.1 99.91 99.9 99.9 226.54 9.09 3.06 
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Minimum 99.6 0.5 97.16 99.6 98.3 264.01 10.39 6.14 

Maximum 97.8 3.2 97.85 97.9 99.9 253.69 10.47 11.59 

 

Table 3: Experimental results of classifiers on test dataset (6 features) 

Classifiers 

Evaluation Metrics 

TPR(%) FPR(%) ACC(%) PRE(%) ROC(%) RMSE(%) 

NB 95.2 6.1 95.17 95.2 99.3 21.87 

NN-SGD 97.2 3.6 97.23 97.3 96.8 16.64 

k-NN 99.9 0.2 99.84 99.8 100 3.67 

RIPPER 99.9 0.2 99.86 99.9 99.9 3.62 

C4.5 99.8 0.2 99.85 99.8 99.9 3.63 

RF 99.9 0.1 99.92 99.9 100 2.54 

 

 

Table 4: Experimental results of classifiers on “Uni Corr” (41 & 6 features) 

Classifiers 

Evaluation Metrics & # Features 

TPR (%) FPR (%) ACC (%) PRE (%) ROC (%) RMSE (%) 

41 6 41 6 41 6 41 6 41 6 41 6 
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NB 91.5 90.4 12.3 15 91.52 90.41 91.8 91.3 93.3 97.9 29.02 30.91 

NN-SGD 92.8 91.8 10.7 12.8 92.77 91.78 93.1 92.4 91 89.5 26.88 28.67 

k-NN 94.2 95.4 9 6.8 94.2 95.36 94.5 95.5 93.9 94.6 23.19 20.89 

RIPPER 94.5 95.2 8.5 7.5 94.52 95.15 94.8 95.4 93.1 93.8 23.41 22.08 

C4.5 94.5 92.6 8.6 11.2 94.51 92.61 94.8 93 94.6 94 23.26 25.41 

RF 94.2 94.6 9.1 7.1 94.21 94.61 94.6 94.6 99.3 97.1 19.73 20.64 

 

compare and contrast the results achieved by six classifiers using various evaluation metrics 

after being exposed to datasets containing 41 and 6 features from the "Uni Train" and "Red 

Uni Train" datasets, respectively. The TBM and TTM for the full set of 41 characteristics are 

much higher than those for the condensed set of 6. Reducing the TBM 

Table 5: Experimental results of ensembles on test dataset (6 features) 

Ensemble of 

Classifier 

Evaluation Metrics 

TPR (%) FPR (%) ACC (%) PRE (%) ROC (%) RMSE (%) 

Average 99.9 0.2 99.87 99.9 100 7.5 

Product 99.6 0.5 97.22 99.6 98.4 6.27 

Majority 

Voting 

99.9 0.2 99.88 99.9 99.9 3.42 

Minimum 99.6 0.5 97.22 99.6 98.4 6.27 
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Maximum 97.8 3.2 97.84 97.9 99.9 11.6 

 

Table 6: Experimental results of ensembles on “Uni Corr” (41 & 6 features) 

Ensemble of 

Classifier 

Evaluation Metrics & # Features 

TPR (%) FPR (%) ACC (%) PRE (%) ROC (%) RMSE (%) 

41 6 41 6 41 6 41 6 41 6 41 6 

Average 94.3 93.5 8.9 10.3 94.3 93.5 94.7 93.9 99.2 97.9 21.9 22.7 

Product 93.7 93.2 9.5 11 92.7 91.1 93.9 93.8 91.7 90.3 25.2 26 

Majority 

Voting 

94.3 93.6 8.9 10.1 94.3 93.6 94.7 94 92.7 91.8 23.8 25.3 

Minimum 93.7 93.2 9.5 11 92.7 91.2 93.9 93.8 91.7 90.3 25.2 26 

Maximum 91 92.1 13.7 12.7 91 92.1 91.6 92.8 99 98 21.3 21.8 

 

For 5 out of 6 feature sets, the reduction is between 68 and 96%, with k-NN and TTM seeing 

reductions of 40 to 94%. Both TBM and TTM are compared through graph in Figures 4 and 

5, albeit for different sets of characteristics (41 and 6, respectively). Classifiers' results on the 

"Uni Test" and "Red Uni Test" datasets are shown in As can be using an optimized features 

set results in less computation time being used during the training and testing phases while 

yet preserving the same classification performance as the original features set. 

Both the Majority Voting and Average ensembles outperformed the other four ensemble 

methods on the smaller dataset in terms of TPR (99.9%), FPR (0%), and PRE (100%). Aside 

from that, Majority Voting fared better than the others in ACC (99.91%) and ROC (100.0%) 

on the trimmed-down dataset. When compared to other ensembles, Majority Voting has the 
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lowest RMSE, at 1.85% for 6 features and 3.06% for 41 features. As a result, Majority Voting 

ensemble is the most effective combining rule for ensemble. 

 

Figure 2: TPR, ACC, PRE & ROC of classifiers (41 & 6 features) 

 

Figure 3: FPR & RMSE of classifiers (41 & 6 features) 

 

Figure 4: TBM (in sec) of classifiers (41 & 6 features) 

The TBM and TTM of ensembles have dropped significantly by around 58-64% and 42-56%, 

respectively, for 6 characteristics. Figure 6 displays a comparison of the ensembles' TPR, 

ACC, PRE, and ROC, Figure 7 displays the ensembles' FPR and RMSE, Figure 8 displays 

the ensembles' TBM, and Figure 9 displays the ensembles' TTM for 41 and 6 features, 
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respectively. Tables 4 and 6 reveal that the performance of classifiers and ensembles 

evaluated on the "Red Uni Corr" test dataset is comparable to that with 41 features across all 

assessment measures. 

 

Figure 5: TTM (in sec & for k-NN in min) of classifiers (41 & 6 features) 

 

Figure 6: TPR, ACC, PRE & ROC of ensembles (41 & 6 features) 

 

Figure 7: FPR & RMSE of ensemble (41 & 6 features) 

The ensemble utilizing Majority Voting performed better than the other ensembles and single 

classifiers based on the comparison of their performance on several evaluation metrics on the 

reduced set of six characteristics. Therefore, it is more effective and trustworthy for NIDS. As 
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a result, it has been chosen as the Module I (HyFSA-HEIC) ensemble model. Module I 

(HyFSA-HEIC) Performance Evaluation Against Stand-Alone Classifiers NB, 

 

Figure 8: TBM (in sec) of ensembles (41 & 6 features) 

 

Figure 9: TTM (in sec) of ensembles (41 & 6 features) 

Figure 10 displays the TPR, ACC, PRE, and ROC of NN-SGD, RIPPER, C4.5, and RF, while 

Figure 11 displays the FPR and RMSE. Module I (HyFSA-HEIC) now outperforms the 

ensemble with complete features set in terms of TRP (99.9%), ACC (99.91%), PRE (99.9%), 

ROC (99.9%), FPR (0.1%), and RMSE (3.06%), and boasts quicker TBM and TTM. 

 

Figure 10: TPR, ACC, PRE, & ROC of classifiers and HyFSA-HEIC 
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Figure 11: FPR & RMSE of classifiers and HyFSA-HEIC (41 & 6 features) 

CONCLUSION 

This component's goal is to identify potentially harmful network activity. Lighter systems 

with improved performance in terms of higher ACC and lower FPR, FNR, TBM, and TTM 

are offered. It combines HyFSA and HEIC to boost NIDS performance, with HyFSA used to 

pick the best possible feature subset. Large-scale high-dimensional dataset handling, 

optimizing overall ACC with a minimum of false alarms, and similar problems present 

themselves as the primary challenges in IDS. These concerns are dealt with in Module I 

(HyFSA-HEIC) by combining HyFSA and HEIC. Using just 6 carefully chosen 

characteristics (representing only 15% of the original 41), it used 5 different accurate 

intelligent classifiers (NB, NN-SGD, RIPPER, DT (C4.5), and RF) and Majority Voting to 

determine the final conclusions of these 5 classifiers. Module I (HyFSA-HEIC) had the best 

results overall, with a TPR of 99.9%, an ACC of 99.91%, a PRE of 99.9%, a ROC of 99.9%, 

a low FPR of 0.1%, and an RMSE of 3.06% with just 6 features being chosen. On a minimal 

feature set, it cut TMB by 50.79 percent and TTM by 55.30 percent. In conclusion, the TPR, 

ACC, PRE, and ROC are all enhanced, the FPR, FNR, and ERR are decreased, and the 

calculation time required is minimized when the feature selection strategy is integrated into 

the heterogeneous ensemble of intelligent classifiers. 
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