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ABSTRACT— In the midst of an epidemic or pandemic, health care systems are put under 

extreme strain. It is quite easy for an infected individual to disseminate a pandemic illness like 

COVID-19 to the rest of the population. others. Therefore, reducing this kind of stress by 

providing health treatments at home for noncritical infected patients experiencing isolation is an 

important goal. This method is also quite helpful for keeping tabs on how at-home seniors are 

doing when it comes to their health. Home health monitoring is one such area of care provided in 

the comfort of one's own home that does not intrude on the patient's or senior's privacy. This 

paper proposes a home health monitoring system that uses edge computing and transfer learning. 

In particular, a model based on a pre-trained convolution neural network may take use of edge 

devices by using a minimal quantity of ground-labeled data and a fine-tuning technique. This 

suggests that inexpensive on-site processing of visual data recorded by an RGB, depth, or 

temperature sensor is feasible. Thus, there is no need to transmit the raw data collected by these 

sensors to an external source. As a result, concerns about confidentiality, safety, and inadequate 

bandwidth will be moot. The aforementioned uses for real-time computing must also be feasible 

on a budget. 

INTRODUCTION: 

Out of a total population of about 1.35 

billion, only 1.9 million hospital beds across 

all hospital types are available in India. This 

equates to just 1.4 beds per 1000 persons. As 

a corollary to this, the scenario is not much 

better elsewhere. In addition, even the 

nations at the top of the list may be 

unprepared to deal with the consequences of 

a pandemic. As a result, in the face of a 

pandemic or epidemic like COVID-19, 

improvements to home health care are 

necessary. Moreover, given the rising 
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number of elderly persons, home health 

services are becoming increasingly 

important for independent seniors. Since AI 

is helping humans in numerous ways , it is 

clear that AI is enhancing human skills in 

many areas where humans play a central 

role. As a result, AI might help home health 

care in various ways. One such non-intrusive 

and cost-effective sub-area of these services 

is automated patient or elder monitoring 

(shortly we are calling it "Home Health 

Monitoring"); this sub-area may include 

activity monitoring, sleep monitoring, 

respiration monitoring, fall detection, facial 

expression understanding, speech 

recognition, hand hygienic practise 

monitoring, etc. Research shows that deep 

learning (DL) and computer vision (CV) are 

particularly useful for these kinds of tasks. 

But DL, particularly for CV activities, 

necessitated GPU-enabled computer 

equipment, which may not be commonplace 

in all households. One way to solve this 

problem is by using the cloud computing 

method, which entails transferring data to a 

distant cloud server for processing at a 

location different from the user's usual 

environment. However, real-time computing 

may not be viable due to concerns about 

privacy, security, and bandwidth limitations. 

These drawbacks encourage use of Edge 

Computing (EC) . Computing data from in-

house health monitors might be done using 

EC.However, there are obstacles to 

overcome, since edge devices(ED) are often 

compact and have limited computational 

capabilities . Another major difficulty for the 

healthcare industry is the vast quantity of 

data required for DL-based models .We 

propose a deep transfer learning-based edge 

computing approach for in-house health 

monitoring in this research (TL-ECHM). 

Here, we use a transfer learning strategy, 

whereby a model based on a previously 

trained Convolutional Neural Network 

(CNN [19]) and its existing dataset may be 

fine-tuned for use in ED with a very modest 

amount of ground-label data. This manner, 

less processing power would be needed, and 

EDs would be able to do the necessary 

visual computing locally. As a result, it 

should be feasible to lessen the impact of the 

aforementioned problems. In Fig. 1, we see 

a potential implementation of TL-EC-HM, 

complete with a caregiver hub, cloud server, 

ED, and Internet of Things device (sensor) 

all interconnected. Some of the article's most 

salient points are as follows: 

We provide a research on health and activity 

monitoring for patients and the elderly in the 
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home as a means of preventing medical 

emergencies. 

• We suggest a DTL and EC-based approach 

(TL-EC-HM) for health monitoring in the 

home. 

•We present some suggestions on where 

future research may go in order to build 

upon the foundation laid by our analysis of 

the proposed privacy-preserving TL-EC-HM 

for localised visual computing. 

 

 

RELATED WORK 

Beds, ICU beds, and ventilators in Indian 

hospitals as of Covid19, by state 

Policymakers all across the world have been 

forced by the fast spread of COVID-19 to 

assess the sufficiency of their local health 

care infrastructure. Numerous hard-hit areas 

have seen an inflow of severe cases, putting 

a pressure on medical facilities. Considering 

the rapid spread of COVID19 in India, it is 

crucial to assess the country's ability to 

manage particularly severe cases. 

To estimate the number of hospital beds, 

intensive care unit beds, and mechanical 

ventilators in each Indian state, we pooled 

information from both the public and private 

healthcare sectors. We assessed capacity in 

each Indian state and union territory by 

using data from the 75th wave of the 

National Sample Survey (2017-2018) and 

the number of hospitals in the public sector 

from the 2019 National Health Profile 

(NHP) of India (UT). We assumed that half 

of all intensive care unit beds had ventilators 

installed in them, and that 5% of all hospital 

beds were ICU beds. 

From our research, we determined that there 

are around 1.9 million hospital beds, 95,000 

intensive care unit beds, and 48,000 

ventilators in India. There are more private 

than public beds, intensive care unit beds, 

and ventilators on a national scale 

(1,185,242 vs. 713,986), and more private 

than public ICU beds and ventilators. Our 

research indicates that there is a significant 

disparity in available resources between the 

50 states and the UTs. 

Acute care hospitals are ready for covid-

19 
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Hospitals are an integral aspect of the 

healthcare system because they provide 

urgently needed medical attention to the 

public. Hospitals and the healthcare system 

as a whole might be overwhelmed by the 

steady spread of illness and the rapidly 

rising demand for services brought on by 

prolonged and coupled outbreaks. In order to 

better prepare hospitals for emergencies 

such as an epidemic, pandemic, or natural 

catastrophe, hospital administrators must 

oversee the implementation of appropriate 

general priority action. The purpose of this 

paper is to serve as a checklist for the most 

important things to accomplish as part of an 

ongoing hospital emergency preparation 

strategy. 

We hope that this checklist will be useful to 

hospital administrators and emergency 

planners in identifying and implementing the 

steps necessary to guarantee a swift response 

to the COVID-19 epidemic, as outlined 

above. The checklist is broken down into 

eleven sections, and inside each section, 

there is a set of questions to ask about the 

current state of a suggested activity. 

Healthcare facilities that may see an uptick 

in patient demand should be ready to swiftly 

execute each measure. In the 

"Recommended reading" section, we've 

compiled a list of resources that we think are 

particularly useful for learning more about 

each component. 

METHODOLOGY 

Adjusting the Settings of a Fully-Trained 

CNN: This is the initial stage of 

computation in ED. To begin, a small 

sample of actual data gathered by installed 

sensors with ground truth label is prepared 

for train and test as: 

 dataT rain0 = {(x 0 i , y0 i ) : i = 1 to n}  

dataT est0 = {(x 0 i , y0 i ) : i = 1 to n 0 }  

Later, this dataset is used to fine-tune the 

trained CNN, preparing the ED to carry out 

the necessary EC. It's the same deal here; 

you choose a series of actions from 1 to C 0. 

The last few layers of the trained CNN-

based model undergo the same set of 

operations as in (1), (2), and (3) (again, this 

varies by task and ED). Once they are 

completed, EDs will be able to detect and 

react to a live video's frames in real time. 

Running activity recognition involves 

creating a CNN-based activity detecting 

model and then extracting overlapping 

frames from a live video feed using a 

windowing technique. The CNN is used on 

each window to get a probability score at 
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that level. After that, a mean is calculated at 

the frame level. Let's say the window size is 

[t1 to t2], and we take K overlapping frames 

to compute the probability score for each 

frame.  

 

where the mean and individual frames of the 

window [t1, t2] are assigned probability 

ratings denoted by ybi 0 and ybi, 

respectively. The softmax score, which 

represents the likelihood of an event 

occurring in a given frame, is used to 

identify motion in individual frames. With 

them, we may determine how accurate our 

judgments and inferences typically are 

across all frames. After that, the data is sent 

to a caregiver hub, where it is processed, and 

then to a cloud server, where it is stored. 

Achieving Results: The CDC gets a 

generalisation about the kind of caregiver 

needed. Categories might include "severe 

alarm," "service necessary," etc. The care 

facility acts in accordance with these 

classifications. These steps may include 

providing a service, consulting with medical 

professionals, etc. Data may be kept in the 

cloud and retrieved as needed for long-term 

monitoring of the sick or the elderly person. 

The patient or senior citizen will be more 

likely to employ home health monitoring 

services if they know that only conclusions 

(not raw data) leave the house. 

 

RESULT AND DISCUSSION 

Health monitoring models may be generated 

and loaded when the uploaded Fall 

Detection Dataset has been opened in 

Dataset open. Use a jpeg picture to detect 

whether or not a person has fallen using a 

red-green-blue image. 

 

Similarly, the above picture was likewise 

predicted by AI to be a FALL; now it is 

being tested with other photographs. 
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Above, the patient's status is shown to be 

NO FALL. 

CONCLUSION 

In the event of a pandemic or to provide 

cost-effective care for the elderly, home 

health monitoring would be an invaluable 

tool. An essay proposing a computer system 

was written here.edge computing relies on a 

vision-based strategy using deep transfer 

learning in edge devices. The method relies 

on internal processing and does not need the 

transmission of the raw visual data 

continually captured by visual sensor(s). As 

a result, latency, lack of privacy, and 

security of data are not major concerns. 
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