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ABSTRACT 

Pythagorean Fuzzy Set (PFS) theory, an extension of Atanassov's Intuitionistic Fuzzy Set (IFS) 

theory, has gained significant momentum in handling uncertainty and vagueness in decision-

making and computational intelligence. The key advancement of PFS lies in allowing the sum 

of the squares of membership and non-membership degrees to be at most one, providing more 

flexibility in capturing human reasoning. This paper presents an extensive overview of recent 

developments in PFS theory, including operations, aggregation methods, similarity measures, 

and entropy measures. Additionally, we explore a broad spectrum of applications, such as 

multi-criteria decision-making (MCDM), medical diagnosis, risk assessment, and machine 

learning. The paper concludes with a discussion of future research directions, aiming to further 

integrate PFS into advanced data-driven and intelligent systems. 
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I. INTRODUCTION 

In the evolving landscape of mathematical modeling and computational intelligence, the need 

to address imprecision, vagueness, and uncertainty has led to the development of various 

generalized frameworks beyond classical binary logic. Traditional set theory, governed by rigid 

true or false classifications, often falls short in representing the complexities and ambiguities 

inherent in real-world problems. As a solution to this limitation, fuzzy set theory, introduced 

by Lotfi A. Zadeh in 1965, marked a groundbreaking shift by enabling the representation of 

partial truths through membership degrees ranging between zero and one. This foundational 

concept has since undergone numerous extensions, each striving to capture uncertainty with 

greater granularity and effectiveness. 

Among the significant advancements, Atanassov’s Intuitionistic Fuzzy Set (IFS) theory 

emerged in 1986 as a powerful extension, introducing the notion of non-membership alongside 

membership, subject to the constraint that their sum does not exceed one. While IFS provided 

a richer modeling framework, particularly in cases involving incomplete information or partial 

truth, it still imposed a certain rigidity in its structural formulation. Recognizing this limitation, 

Ronald R. Yager proposed the Pythagorean Fuzzy Set (PFS) theory in 2013 as a more flexible 

and intuitive framework. PFS extends the IFS paradigm by relaxing the additive constraint into 

a quadratic one, wherein the square sum of membership and non-membership degrees must not 
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exceed one. This mathematical enhancement allows for a broader and more realistic 

representation of human reasoning and subjective judgment. 

Pythagorean Fuzzy Sets thus form a natural and elegant generalization of Intuitionistic Fuzzy 

Sets. By allowing a higher degree of hesitancy and preserving logical consistency, PFS can 

encapsulate more complex and nuanced decision-making scenarios. The square sum constraint 

(μ2+ν2≤1)(\mu^2 + \nu^2 \leq 1)(μ2+ν2≤1) is particularly advantageous in multi-criteria 

environments, where uncertainty often arises from a combination of incomplete knowledge, 

contradictory evidence, and subjective preferences. The introduction of the PFS framework has 

opened new avenues for researchers, leading to a proliferation of theoretical studies and 

practical applications across various domains. 

The core strength of PFS lies in its ability to capture the hesitation margin more effectively. In 

fuzzy systems, the degree of hesitation is not explicitly modeled, while in IFS, it is derived 

from the linear complement of membership and non-membership values. However, in PFS, the 

hesitancy is calculated using the Euclidean norm, allowing for a more expressive range. This 

flexibility makes PFS highly suitable for applications involving complex, high-stakes decision-

making processes such as medical diagnosis, risk assessment, supplier selection, and financial 

forecasting. The improved interpretability and modeling capabilities of PFS have also found 

resonance in emerging fields like artificial intelligence, machine learning, and pattern 

recognition. 

Since its inception, the theoretical development of PFS has been both extensive and diverse. 

Researchers have proposed various operational laws for PFS, including union, intersection, and 

complement, as well as a wide range of aggregation operators such as Pythagorean fuzzy 

weighted averaging (PFWA), ordered weighted averaging (PFOWA), and hybrid operators. 

These operators have been instrumental in constructing robust models for multi-criteria 

decision-making (MCDM), a critical area where uncertainty plays a pivotal role. Moreover, the 

definition and refinement of similarity and distance measures under the PFS framework have 

significantly enhanced the precision and applicability of clustering, classification, and pattern 

recognition techniques. 

Entropy measures, essential in quantifying fuzziness or uncertainty, have also been adapted to 

the Pythagorean context. These measures serve not only to evaluate the quality of information 

represented in fuzzy environments but also to inform the selection of optimal solutions in 

decision-support systems. The unique mathematical formulation of PFS has enabled the 

development of entropy models that reflect both the certainty and hesitation present in decision 

variables, thereby improving the reliability of outcomes in ambiguous settings. 

Another vital area of advancement has been the integration of PFS with other computational 

paradigms. Hybrid models combining PFS with rough sets, soft sets, and grey systems have 

been proposed to leverage the complementary strengths of these frameworks. In machine 

learning, Pythagorean fuzzy clustering algorithms have demonstrated enhanced performance 

in data segmentation tasks by better handling noisy, imbalanced, or incomplete datasets. 
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Similarly, the use of PFS in neural networks and expert systems has shown promise in domains 

requiring human-like reasoning, such as diagnostic systems, fraud detection, and customer 

behavior modeling. 

The impact of Pythagorean fuzzy logic is perhaps most evident in decision-making 

applications, where it addresses the crucial need to model complex preferences and conflicting 

criteria. In healthcare, for instance, PFS-based decision models allow for the integration of 

expert opinions and uncertain test results to support accurate and nuanced diagnoses. In 

engineering and environmental studies, PFS has been applied to risk evaluation frameworks 

that account for vague or imprecise parameters, offering better insights for mitigation 

strategies. In finance and economics, PFS helps model market uncertainties and investor 

behavior, enhancing forecasting accuracy and portfolio management. 

Despite its many advantages, PFS is not without challenges. The computational complexity of 

PFS-based algorithms, especially when applied to large-scale or real-time systems, can be 

significant. Furthermore, the interpretation of results generated under PFS frameworks may 

require careful contextualization, particularly when deployed in sensitive domains. There is 

also a need for standardized tools and software implementations to facilitate the adoption of 

PFS in practical applications. These challenges underscore the importance of continued 

research and development in this area. 

The present paper aims to provide a comprehensive overview of the current state of 

Pythagorean fuzzy set theory and its diverse applications. It begins with a formal introduction 

to the mathematical foundations of PFS, followed by an in-depth discussion on operational 

laws, aggregation techniques, and similarity measures. The paper then explores various 

entropy-based approaches and their implications for decision analysis. Subsequently, it delves 

into the practical implementations of PFS in fields such as healthcare, risk management, 

artificial intelligence, and industrial engineering. Finally, the paper outlines emerging trends 

and research gaps, highlighting potential directions for future exploration. 

In the evolution from fuzzy sets to intuitionistic and eventually to Pythagorean fuzzy sets marks 

a significant progression in the modeling of uncertainty. Pythagorean fuzzy set theory stands 

as a robust and adaptable framework, offering enhanced analytical capabilities and deeper 

insights across a wide spectrum of disciplines. As uncertainty continues to be a defining feature 

of modern decision-making environments, the relevance and applicability of PFS are likely to 

grow even further. With its solid theoretical foundation and expanding practical reach, PFS 

represents a pivotal advancement in the broader context of intelligent systems and uncertainty 

management. 

II. MULTI-CRITERIA DECISION-MAKING (MCDM) 

1. Definition: Multi-Criteria Decision-Making (MCDM) is a decision-support process 

used to evaluate and prioritize multiple conflicting criteria in complex decision 

scenarios. 
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2. Need for MCDM: Real-world decision problems—such as selecting the best supplier, 

choosing a medical treatment, or evaluating investment options—often involve various 

qualitative and quantitative factors that are difficult to compare directly. 

3. Challenges Addressed: Traditional MCDM methods may fall short in environments 

characterized by imprecision, vagueness, and hesitation. Pythagorean Fuzzy Sets (PFS) 

offer an advanced framework to model such uncertainties. 

4. Why PFS for MCDM: PFS allows the square sum of membership and non-

membership degrees to be ≤ 1, offering a larger and more expressive hesitation margin 

than Intuitionistic Fuzzy Sets (IFS). This is ideal for subjective judgments in MCDM 

problems. 

5. Aggregation Operators: Decision-makers often use Pythagorean Fuzzy Weighted 

Averaging (PFWA) and Pythagorean Fuzzy Ordered Weighted Averaging (PFOWA) 

operators to integrate multiple criteria evaluations. 

III. ENTROPY AND INFORMATION MEASURE 

• Definition of Entropy: Entropy is a fundamental concept derived from information 

theory that quantifies the degree of uncertainty, fuzziness, or disorder within a system. 

In fuzzy set theory, entropy measures the ambiguity or the lack of clarity in the 

membership information. 

• Role in Fuzzy Systems: Entropy measures help in evaluating the quality and reliability 

of fuzzy information, making them crucial for decision-making processes, pattern 

recognition, and classification tasks. 

• Entropy in Classical Fuzzy Sets: Traditional fuzzy sets use entropy to quantify 

uncertainty based solely on the membership degree. The higher the entropy, the more 

uncertain the information. 

• Entropy in Intuitionistic Fuzzy Sets (IFS): IFS extends classical entropy by 

considering both membership and non-membership degrees, reflecting the hesitation or 

indeterminacy more explicitly. 

• Extension to Pythagorean Fuzzy Sets (PFS): PFS further generalizes this idea by 

incorporating a quadratic constraint on membership (μ) and non-membership (ν) 

values: μ2+ν2≤1\mu^2 + \nu^2 \leq 1μ2+ν2≤1. This richer structure requires adapted 

entropy formulas to capture the unique aspects of uncertainty and hesitation within PFS. 

• Pythagorean Fuzzy Entropy: Several entropy measures have been proposed 

specifically for PFS, designed to reflect both: 

o The degree of fuzziness (membership and non-membership uncertainty) 

o The hesitation margin, which is larger and more flexible than in IFS. 

• Typical Entropy Measures for PFS: 
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o Yang and Singh’s entropy: Based on Euclidean distance between membership 

and non-membership. 

o Wei’s entropy: Incorporates hesitation explicitly through the Pythagorean 

condition. 

o Shannon-like entropies adapted for PFS, capturing uncertainty in information 

content. 

 

• Applications of Entropy in PFS: 

o Assessing uncertainty in decision matrices for Multi-Criteria Decision-Making 

(MCDM) 

o Enhancing clustering and classification accuracy in machine learning 

o Evaluating reliability of expert opinions in knowledge-based systems 

• Information Measure: Closely related to entropy, information measures quantify the 

amount of useful information contained in fuzzy data. They guide the selection of 

criteria, weights, and support decision-making models to maximize information gain 

and reduce ambiguity. 

• Importance in PFS-based Models: By effectively quantifying uncertainty, entropy 

and information measures ensure that decisions or classifications derived from PFS data 

are more robust, interpretable, and reliable, especially in complex, uncertain 

environments. 

IV. CONCLUSION 

Pythagorean Fuzzy Set theory has become a cornerstone for handling uncertainty in complex 

systems. Its expanded capacity over IFS and FS makes it ideal for nuanced decision-making 

and intelligent systems. With ongoing research, PFS is poised to contribute significantly to 

fields like artificial intelligence, healthcare, risk analysis, and beyond. Continuous theoretical 

enhancements and novel applications will further cement its role in modern computational 

intelligence. 
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