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ABSTRACT 

The OPF techniques may be broken down into two broad categories: Intelligent and Conventional. 

The prominent Newton method, Gradient method, Quadratic Programming method, Interior point 

method, and Linear Programming method are only few of the typical procedures. OPF seeks to 

maximize some criterion within the constraints of the network power flow equations and the 

capabilities of the system and its components. By changing the available controls to minimize an 

objective function under strict operational and security constraints, the ideal situation is achieved. 

This chapter discusses the methods already in use and those that have been suggested to address the 

OPF issue. Formulation of the OPF issue, restrictions, objective function, applications, and detailed 

reporting of many well-known OPF approaches are all part of this.    Particle swarm optimization and 

the Genetic Algorithm are two examples of the recently created and widely used approaches that are 

part of intelligent techniques.  In this study, both evolutionary and metaheuristic algorithms are taken 

into account to analyze optimum power flow. PSO and GA are preferred over single-point methods 

like simulated annealing and tabu search due to the multi-parent effect they produce. When compared 

to existing metaheuristic algorithms, the Bat method performs much better across a variety of use 

cases. 

KEYWORDS: Optimisation Methodologies, Optimal Power Flow, OPF techniques, Linear 

Programming method 

INTRODUCTION  

The social behavior of fish schools and bird flocks served as inspiration for Particle Swarm 

Optimization (PSO), a population-based stochastic optimization approach.  Particle swarm 

optimization (PSO) employs a population of particles, each of which represents a potential 

solution to the optimization issue, to conduct the search for the optimum solution. Particles 

fly about in a multidimensional space, following the paths of the ideal ones, until they either 

stabilize in a somewhat stable place or run out of computational margins. In order to return 

to its previous best position and advance toward the global best position obtained up to that 

point, each particle modifies its trajectory. PSO has lately received a lot of attention in power 

system applications due to its ease of implementation and speedy convergence for a variety 

of optimization issues.  

The system is initiated with a population of random solutions, and it iteratively looks for 

optimal solutions by adjusting its generational parameters. Potential solutions, which are 

represented as particles in PSO, are guided across the solution space by the optimal particles 

at the moment. Each every atom forms an opinion based on its own experience and that of its 

neighbours. In contrast to GA, PSO does not make use of genetic operators like crossover 

and mutation. Particles contain a memory that is crucial to the algorithm and can update 

them based on its internal velocity. The PSO process flow is shown in Figure 1.   
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Figure 1 Flow Chart of proposed PSO algorithm 

Solution Algorithm   

Below is a representation of the fundamental building blocks required for the operation of 

the Solution Algorithm.  

X(t) = X(t) = 0 An m-dimensional vector, where m is the number of optimized parameters, 

defines this possible solution. To represent the jth particle at time t, we write Xj(t) = 

[xj,1(t),.........xj,m (t)], where xs are the optimised parameters and xj, k(t) represents the 

location of the jth particle with respect to the kth dimension, i.e. the value of the kth 

optimised parameter in the jth candidate solution.   

Populace, nabes (t): Pop (t)= [Xi(t),....] is a collection of n particles at time t. Xn(t)T. Swarm: 

It is an inherently disordered collection of moving particles that prefer to cluster together, 

even if each particle seems to be traveling in a different direction.  

The speed of a moving particle is denoted by the m-dimensional vector V(t), where m is the 

number of dimensions. The velocity of the jth particle at time t is defined as Vj(t) = 

[vj,1(t),..............vj, m (t)], where vj,k(t) is the component of the jth particle's velocity with 

respect to the kth dimension.   

w (t) = moment of inertia. The effect of past velocities may be modulated by adjusting this 

parameter, which affects the current velocity. By doing so, it manipulates the trade-off 

between the particles' local and worldwide exploration capacities, with earlier stages 

recommending a high inertia weight to aid in global exploration and later stages 

recommending a lower inertia weight to aid in local exploration.  

Uniquely superior X* (t): During the time it spends searching, the particle compares the 

fitness it has at its present place to the highest fitness it has ever had. The optimal position, 
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X* (t), is the one that corresponds to the greatest fitness thus far. This allows the optimal 

location, X* (t), to be determined for each particle in the swarm and updated during the 

search. In the case of an objective function J in a minimization problem, the best jth particle 

can do is   

X*(t) is find such that   .  

For straightforwardness, it is  understood that Jj*  =  J(X*j(t)).    

For the jth particle, individual best can be expressed as  X*j(t) = [xj, 1(t) ………… x*j, m(t)].  

Global best X** (t): Among all best positions (i.e., the greatest of all) achieved up to this 

point, it is the best.  Therefore, the best in the world may be identified as  

j=1,…….n.   

For straight  

forwardness, consider that J**= J(X** (t)).  

Criteria for when to call it quits on a search operation. If any of the following holds true, we 

may call this search off.    

After more iterations than you care to count, the optimal answer hasn't changed.  

or  

The maximum number of iterations has been reached. The Solution algorithm is developed 

as shown below, with the essential parts explained as above.  

Annealing is used to provide a unified search in the early stages and a highly localized 

search in the latter stages. Here, we think about a decrement function for reducing the inertia 

weight provided by w(t)=w(t-1) where is a decrement constant less than but close to 1.  

After the location update, the search area is checked for feasibility to ensure that the particles 

don't go shooting off into unreachable reaches.   

There is an upper bound, denoted vkmax, on the speed of particles in the kth dimension. By 

setting this limit, local exploration space is expanded and the gradual evolution of human 

learning is more accurately simulated.  

To optimize m parameters, the PSO method uses a population of n particles, each of which is 

a vector with m dimensions. The computational flow of the PSO approach, after 

incorporating the aforementioned changes, may be summarized as follows. 

Step 1   (Initialization)  

Start the clock at t=0 and produce n random particles.   

  

 is formed by picking a random probability-weighted value from the set of all 

possible values for the kth optimized parameter   

In a similar vein, have all particles' starting velocities be completely arbitrary,   

   

 uses a uniform probability distribution across the k-th dimension to obtain a random 

number    

The goal function J is applied to each particle in the seed population.   
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For each particle, set  Search for  

the best value of the objective function   

Set the particle  associated with  as the global best  , with an objective function 

of   

Set the initial value of the inertia weight   

Step 2 (Time updating)   

  Update the time counter t = t + 1.   

Step 3  (Weight updating)  

 Update the inertia weight w(t)=αw(t-1)  

Step 4  (Velocity updating)   

 The following equation is used to update the jth particle's velocity in the kth dimension 

based on the global best and individual best of each particle: 

  

Where  is a uniformly distributed random integer between 0 and 1, where both and are 

positive constants. Importantly, the second term symbolizes the PSO's ability to think and 

remember, allowing the particle to adjust its velocity in response to new information. The 

third term indicates the PSO's social component, in which the particle's velocity modifies 

itself in response to the social-psychological adaption of information. If a particle's velocity 

exceeds the allowed range, it should be corrected to the range.  

Step 5   (Position updating)   

 Each particle's location is updated according to the following equation using the new 

velocities:  

    
If a particle's location exceeds the allowed range in either direction, restore it to the 

appropriate range.  

Step 6   (Individual best updating)  

  Each particle is evaluated according to its updated position. If  

 then update individual best as   

and go to step 7; else go to step 7.  

Step 7      (Global best updating)  

  Search for the minimum value , where min is the  index  of  the 

 particle  with  minimum  objective  function,  i.e.  

, then update global best as and go to step 8; else go to 

step 8.   

Step 8   (Stopping criteria)  

  Proceed to Step 2 unless one of the Stopping Criteria has been met.  

 

  

and  
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OBJECTIVE FUNCTION FOR PSO  

 Adjusting the on-load tap changing ratio, the capacity of the reactive power compensation 

capacitor, and the voltage at the generator's terminals are all examples of control variables 

that can be used in conjunction with voltage integrated control and reactive power to 

decrease active power losses and boost power factor. The objective function, state variables 

(generator reactive power and nodes' voltages), control variables (on-load tap changing ratio, 

reactive power compensation capacitor capacity, and generator terminal voltage), and 

mathematical model 

SIMULATION ANALYSIS OF PSO IN OPTIMAL POWER FLOW CONTROL  

Cost Optimization of PSO   

PSO: 1/50 iterations, GBest   =   7927773.0219071107.  

PSO: 10/50 iterations, GBest    =   7919868.2389082452.  

PSO: 20/50 iterations, GBest   =   7915334.1705612.  

PSO: 30/50 iterations, GBest   =   7898649.0694836471.  
PSO: 40/50 iterations, GBest   =   7893281.6893112473.  

PSO: 50/50 iterations, GBest   =   7828249.4674299723.  

 GBest represents the optimal cost-benefit ratio for the cycle. Cost optimization using PSO 

may be observed to be achieved as costs continue to drop. As seen in Figure 2, the minimum 

value occurs at the 50th repetition. The optimal cost sets a limit on PSO's dimensionality. 

Since the optimal value is found at the 50th iteration, this study restricts the dimension to 53.    

 

Figure 2 Simulation analysis of PSO 
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BAT ALGORITHM  

 The BAT algorithm is a kind of optimization theory that takes its cues from bats' 

echolocation. Using echolocation, bats can constantly adjust their location. Bats use a 

method called echolocation to navigate by emitting a succession of loud ultrasonic waves 

and listening to the resulting echoes. Bats use the variations in the latency and volume of the 

reflected waves to zero in on a specific prey item. Each pulse in echolocation barely lasts 

milliseconds at most (8-10 ms). However, its frequency is always the same, ranging from 25 

to 150 kHz (or 2 to 14 mm in wavelength).  

The normal frequency range for most bat species is 25 kHz to 100 kHz, while some may 

emit frequencies up to 150 kHz. The numerous bat-inspired algorithms are designed by 

idealizing certain bat echolocation properties. The following guidelines best describe how 

bats use echolocation:  

I. All bats utilize echolocation to gauge distance, and for some unknown reason, they 

can distinguish between obstacles and prey.  

II. Bats use a set frequency fmin, a changing wavelength, and a constant loudness A0 to 

fly about in random patterns while they look for prey. They emit pulses at a rate r 

[0,1], which they may control based on how close they are to their intended target.   

III. Even though there is a wide range of possible loudness values, we will suppose that 

the range is from a very loud (positive) A0 to a very quiet (constant) Amin.  

CONCLUSION 

Optimal power flow for voltage regulation using several controllers like PSO, BAT, and 

GA are explored in this research.  The efficacy of GA in OPF is confirmed by 

comparative study. Utilizing UPFC broadens the scope of voltage regulation in the 

power grid.  Using the novel SA algorithm and comparing it to PI based UPFC, we 

explore the importance of DC link voltage regulation in terms of voltage stability.  The 

IEEE 30 bus system is used for all of the following analyses. For greater voltage 

stability and reactive power regulation, this method may be used to larger IEEE bus 

systems.  In addition, the UPFC FACTS device for regulating power flow and improving 

system stability is incorporated in this study. To regulate the voltage and the reactive 

power injected by the UPFC, the shunt control's voltage controller is crucial.  

Performances of UPFCs using PI and simulated annealing (SA) approaches were 

evaluated with regards to Maintained voltage and Harmonics reduction. There is a 5% 

voltage loss with a PI controller, but it is eliminated with SA. While the PI controller can 

achieve a reduction in harmonics of around 85%, the SA can achieve a reduction of 

about 95%. Therefore, improved outcomes may be shown in Maintained voltage and 

Harmonics when SA is decreased in UPFC. As a result, IEEE 30 bus systems are a good 

fit for SA based UPFC. 

REFERENCES 

 Chuang, S. J., Hong, C. M. and Chen, C. H., “Improvement of integrated 

transmission line transfer index for power system voltage stability”, International 

Journal of Electrical Power & Energy Systems, Vol. 7, No. 8, pp. 830-836, 2016.  



 

Vol 11 Issue 12, Dec 2022                              ISSN 2456 – 5083 Page 1103 

 

 Devaraj, D., Roselyn, J. Preetha and Uma Rani R., “Artificial Neural Network 

Model for Voltage Security Based Contingency Ranking”, International Journal of 

Applied Soft Computing, Vol. 7, No. 5, pp. 722–727, 2007.  

 Devaraj, D. and Roselyn, J. Preetha, “On-Line Voltage Stability Assessment Using 

Radial Basis Function Network Model With Reduced Input Feature”, Electrical 

Power and Energy Systems, Vol. 33, No. 9, pp. 1550–1555, 2011.  

 Dianov, E. M., Grudinin, A. B., Khaidarov, D. V., Korobkin, D. V., Prokhorov, A. 

M. and Serkin, V. N., “Nonlinear dynamics of femtosecond pulse propagation 

through single mode optical fiber”, Journal on Fiber & Integrated Optics, Vol. 8, No. 

1, pp. 61-69, 1989.  

 Domnel, H. W. and Tinney, W. F., “Optimal Power Flow Solutions” Institute of 

Electrical and Electronics Engineers Transaction on Power Apparatus and Systems, 

pp. 1866-1876, 1968.  

 Dubois, D. and Fortemps, P., “Computing improved optimal solutions to max–min 

flexible constraint satisfaction problems”, European Journal of Operational 

Research, Vol. 118, No. 1, pp. 95-126, 1999.  

 Eberhart, R. C. and Kennedy, J., “A new optimizer using particle swarm theory”, 

Proceedings of the Sixth International Symposium on Micro Machine and Human 

Science, Nagoya, Japan, pp. 39-43. Piscataway, Institute of Electrical and 

Electronics Engineers Service Center.  

 Eidiani, M., “A reliable and efficient method for assessing voltage stability in 

transmission and distribution networks”, International Journal of Electrical Power & 

Energy Systems, Vol. 33, No. 3, pp. 453-456, 2011.  

 Attia, A. El-Fergany, Ahmed, M. Othman and Mahdi, M. El-Arini, “Synergy of a 

genetic algorithm and simulated annealing to maximize real power loss reductions in 

transmission networks”, International Journal of Electrical Power Energy System, 

Vol. 5, No. 6, pp. 307– 315, 2014.  

 Esquivel, C. R. Fuerte and Acha, E., “Unified power flow controller: a critical 

comparison of Newton–Raphson UPFC algorithms in power flow studies”, Institute 

of Electrical and Electronics Engineers Proceedings-Generation, Transmission and 

Distribution, Vol. 14, No. 5, pp. 437-444, 1997.  

 Farrag, M. E. and Putrus, G. A., “Design of an adaptive neurofuzzy inference control 

system for the unified power-flow controller”, Institute of Electrical and Electronics 

Engineers Transactions on Power Delivery, Vol. 27, No. 1, pp. 53-61, 2012.  

 Galanos, G. D., Hatziadoniu, C. I., Cheng, X. J. and Maratukulam, D.  

 J., “Advanced static compensator for flexible AC transmission”, Institute of 

Electrical and Electronics Engineers transactions on power systems, Vol. 8, No. 1, 

pp. 113-121, 1993.  

 Galvani, S., Hagh, M. T. and Sharifian, M. B. B., “Unified power flow controller 

impact on power system predictability”, Institute of Engineering and Technology 

Generation, Transmission & Distribution, Vol. 8, No. 5, pp. 819-827, 2014.  



 

Vol 11 Issue 12, Dec 2022                              ISSN 2456 – 5083 Page 1104 

 

 Gandomkar, M. and Tolabi, H. B., “Investigation of simulated annealing, ant-colony 

and genetic algorithms for distribution network expansion planning with distributed 

generation”, 9th  International Conference on Instrumentation, Measurements, 

Circuits and Systems, China, pp. 48-52, 2010.  

 Goldberg, D. E., “Genetic Algorithms in Search, Optimization, and Machine 

Language”, Wesley publishing company, USA, 1989.  

 Load Modeling And Load Flow Study Using Radial Basis Function (RBF),” Journal 

of Theoretical and Applied Information Technology, Vol. 5, No. 4, pp. 471-475, 

2009.  

   

 

 

 


	A STUDY OF OPTIMISATION METHODOLOGIES FOR OPTIMAL POWER FLOW
	ABSTRACT
	Solution Algorithm

	or
	Cost Optimization of PSO

	Figure 2 Simulation analysis of PSO

