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ABSTRACT  

Computational Long Term Memory Architecture is the suggested model's module name. 

Each of the three modules in the Architecture represents one of the three main categories of 

human long-term memory: computational semantics, episodic memory, and procedural 

memory. In order to aid the episodic and procedural modules and to make cognitive 

judgments, the semantic module is programmed to acquire knowledge about the semantics of 

various sensory domains. This component learns the semantics of phrases in natural language 

and translates them into episodic experiences that may serve as a prompt for conversation. A 

computational mechanism based on a grid and the place neuron is presented, enabling an 

artificial agent to localize itself in a known environment; this paves the way for the agent to 

navigate to complex tasks that necessitate learning the spatial semantics of objects for 

handling.  The capabilities of episodic memory are mirrored in the proposed episodic module. 

This section utilizes the abstract event information, such as event activities and other 

contextual elements necessary for event encoding and episode generation that has been pre-

processed. To save on storage, the episodic module uses a remembering process similar to the 

forgetting mechanism. By carefully crafting the forgetting decay function, we were able to 

reduce the rate of event miss relative to state-of-the-art methods like EM ART. The suggested 

model's third component is a procedural module meant to teach the user how to carry out 

certain actions. Together, it and the semantic module teach the meaning of actions. This 

component was developed to learn tasks via the sequential manipulation of object bodies. 

This module uses deep neural networks to learn the motor level activities that occur in the 

body in response to interactions with objects.  

KEYWORDS: Computational, Long-Term Memory Architecture, Mimic Human Behaviour 

Introduction 

In this study, we look at a Computational 

Long Term Memory Architecture 

(CLTMA) that implements some of the 

fundamental computational components of 

human intelligence. Figure 1 depicts this 

architectural setup. The architecture's 

modules are each specified in terms of the 

role they play. To attain human 

intelligence, all modules coordinate their 

efforts and share the results of their 

processing with one another. One of the 

model's three components, the Semantic 

Module (SM), is designed to mimic the 

human mind's semantic memory. The 

second part, the Episodic Module (EM), is 

specifically designed to store human 

episodic memories. Third, there is a 
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specific section of your brain devoted to 

procedural memory, known as a 

Procedural module (PM).  

COMPUTATIONAL SEMANTIC 

MODULE (CSM)  

In order to understand the semantics of 

language, space, bodily motions, and 

events, the computational Semantic 

Module processes all sensory information. 

The module is broken down even further 

into four sub-parts, each of which is 

responsible for a distinct task. Each 

building block's purpose is outlined below.  

 
Figure 1: Proposed Computational 

Long-Term Memory Architecture 

 a. Event Activity Recognizer (EAR)  

This block's job is to figure out what those 

people in the background are doing. The 

Vnect model's preprocessed visual output 

is sent into the functional block, where it is 

further processed in order to accomplish 

the role identification task. After 

determining what has occurred, block 

notifies the episode module of the roles or 

tasks involved in the event. In order to 

understand the broad strokes of real-world 

occurrences, it also passes the recognized 

actions on to the semantic module's 

general semantic memory. In addition, the 

EAR cooperates with the procedural 

module by transmitting motor-level 

semantics to procedural memory in order 

to instruct behavior.  

b. Sentence Classifier  

The classifier's task is to determine which 

of the stored sentences the input sentence 

most closely resembles. The agent may 

make use of the relevant interaction 

module for the input phrase by routing it to 

the correct module using categorization. 

For instance, the phrase classifier will 

forward event-related queries to the 

episodic model so that the agent may 

provide appropriate responses.  

c. General Semantic Memory   

So that the agent can anticipate what will 

happen next, the block studies the patterns 

and timing of actual occurrences. The 

EFFB receives the block's forecast. 

Concepts and their hierarchies may be 

learned by the memory.  

d. Quadrant Grid Functional Block 

(QGFB)  

Learning the spatial semantics of various 

2D settings and objects is the job of the 

functional block. Using quadrants, the 

module has constructed a hexagonal 

pattern with varying spacing and rotations, 

all dependent on the generated motion of 

internal body components. The 

environment is broken down into a grid 

code by a network of neurons. To learn 

how places are laid up in a given area, the 

module transmits a grid code to the place 

neuron block of the episodic memory 

module.  

3.2 Computational Episodic Module 

(CEM)   

The Episodic component successfully 

replicated all the key features of human 
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episodic memory. The module's 

functionality is broken down into separate 

but related sections. Each cognitive 

module is a computer model that replicates 

a particular aspect of episodic memory. 

Each building block is described as 

follows:  

a. Place Neuron Functional Block 

(PNFB)  

The job of the functional block is to link a 

grid code (received from the QGFB) with 

the sensory input (sight or touch) that will 

be obtained via engagement with the 

physical world. Associative learning 

allows the block to produce a grid code 

that is in sync with the user's sight and 

touch. The grid code may be useful for 

entering a mental map of a location and for 

encoding a sense of location in a 

remembered event.  

b. Event Encoding Functional Block 

(EEFB)  

The block's job is to record the happenings 

of an event, keep track of them, and play 

them back at the drop of a hat. 

Additionally, the block supplies the 

generalized functional block for event 

consolidations with the remembered 

output.   

c. Event Forgetting Functional Block 

(EFFB)  

The purpose of the functional block is to 

prevent the agent from remembering 

irrelevant experiences (those with low 

emotional significance and low recall 

frequency).    

d. Episode Formation Functional Block 

(EFFB)  

The GSM's forecasts inform how the 

functional block groups the occurrences. 

  

e. Episodic Query Binding Extractor 

Functional Block (EQBEFB)  

This section should be used for inquiries 

about the past. A functional block's job is 

to take an episodic query and convert it 

into a binding that can be processed by the 

episodic module.  

COMPUTATIONAL PROCEDURAL 

MODULE (CPM)  

The component is analogous to people's 

procedural memory. There are two distinct 

functional units that make up the module.  

a. Task Hierarchy Learning System  

This computational module's responsibility 

is to acquire knowledge about task 

hierarchies. It creates a hierarchical 

structure for jobs by breaking them down 

into smaller and smaller pieces, until the 

lowest-level work is reduced to its atomic 

components.   

b. Action Translation System  

An implicit motor procedural memory that 

uses deep learning to learn tasks in terms 

of the movement of bodily joints 

PRELIMINARIES OF GRID AND 

THE PLACE NEURON  

To appreciate the suggested computational 

work on the grid and the place neuron, it is 

necessary to be familiar with certain 

hypotheses, scientific research findings, 

and architectural particulars pertaining to 

both.   

During experiments on the rat brain 

conducted by John O'Keefe et.al in 1971, 

the place cell was discovered in the CA3 

region of the hippocampus. The neuron 

only gives a spike when the rat comes in a 

particular area of the environment, hence 

the name "Place Neurons". When a 

person's Place neurons fire, they are 

alerted to their current place. The place 

field describes the extent and form of the 
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field in which a place neuron may become 

active, which may be affected by the 

dimensions of the surrounding space. 

Researchers didn't know where the neuron 

got its position information from until the 

discovery of grid neurons. The fact that the 

place neuron is able to foresee their 

impending locations, as shown by its 

activity in an earlier phase of theta rhythm 

during traversal towards the site 

corresponding to the place neuron, further 

added to the enigma.  It has been 

postulated that the location neuron 

acquires a cognitive map of an 

environment, i.e. an internal representation 

of the world, since it generates the same 

activity even in the dark (without any 

visual input). The picture becomes clearer, 

however, with the discovery of grid 

neurons in the entorhinal cortex of rodents 

and humans; these neurons are one of the 

main sources of input to the place neurons, 

and they generate the hexagonal gridlike 

periodic activation pattern during 

navigation in an environment (i.e., 

activation derives from the self-motion). 

When the agent enters the hexagonal grid's 

firing range, the grid neuron lights up like 

a bulb whose brightness varies with the 

distance between the agent and the closest 

grid point. Our article describes a circular 

shooting range around each grid point, 

which we call the grid ring, with the grid 

point at its center. If the agent is not inside 

the grid ring of a given grid point, that 

point's bulb or grid is deactivated; also, the 

intensity of the bulb, i.e. the grid neuron, is 

greater when the distance between the 

agent and the center is less, and vice versa. 

As a grid neuron's activation depends on 

where the agent is located; at time t = 2, a 

red grid neuron indicates that the agent is 

at any grid point of the hexagonal grid, 

while at time t = 0, a blue grid neuron 

indicates that the neuron is inactive 

because the agent is outside the firing 

range of any grid point.  

A grid neuron's grid pattern might differ in 

spacing and orientation from neighbouring 

grid neurons depicts three distinct grid 

neurons with varying spacing and 

orientation. When these patterns are 

stacked, they form a unique compact code 

called a grid code (grid neuron activation) 

that corresponds to the current sensory 

input or the agent location. This code can 

be associated with the current sensory 

input, in this case the visual input of place, 

and used to create a cognitive map of the 

environment. Since grid activation is 

periodic, integrating one's movement (self-

motion) with the present activation state of 

grid neurons yields prediction activation of 

each grid neuron. Grid code prediction 

means that associated information can be 

gleaned from self-motion input, aiding in 

localization within the working 

environment. As a result, both rodents and 

humans can find their way to their 

destination in the dark (where visual input 

is unavailable). 

 CONCLUSION 

The semantic module is equipped with an 

LSTM-based natural language classifier, a 

computational mechanism that enables it 

to communicate with people. Our research 

has led us to classify natural language 

sentences as either order, information, or a 

question. Since each sentence category 

requires its own dedicated memory 

module, LSTM is used for classification to 

determine the sentence's category and then 

direct the sentence to the appropriate 

memory module. The LSTM neural 
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network is used to do the classification, 

and a 91% accuracy rate is attained. The 

computational event encoding, forgetting, 

episode construction, query response, and 

hierarchical event storage method are all 

made available to the episodic module so 

that specific data about events may be kept 

in memory storage. The suggested 

encoding technique stores information 

about real-world events in a form that 

allows them to be remembered in response 

to an episodic question. The inquiry is in 

plain language, thus the episodic module 

proposes a binding extractor to translate it 

into a form that may be understood as a 

trigger in episodic memory. In terms of 

binding extraction, we reach a precision of 

91%.  The method is more abstract since it 

does not use sensory data or motor skill 

use in its suggested model. This method 

works well in simulated situations if the 

agent is only given high-level, abstract 

knowledge rather than sensory data. The 

model has an event encoding mechanism, 

which, in contrast to prior models, allows 

forgetting of just certain event activities 

rather than the whole event itself. The 

model's space efficiency is superior than 

that of any other episodic memory model 

because of a cardinality element included 

to the forgetting process. In addition, we 

provide a novel unified process for 

creating the knowledge graph that is based 

on remembering and repeating 

experiences. In addition, a goal-directed 

inference is performed on the constructed 

knowledge graph. The effectiveness of the 

model is evaluated by sending it into a 

simulated battlefield.  
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