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Abstract  

Building a multivariate time series model involves five pivotal steps: Identification 
Specification, Estimation and Hypothesis Testing, Diagnostic Assessment, and Forecasting. 
Estimating parameters in a multivariate Vector Autoregressive (VAR) model presents a greater 
challenge compared to univariate autoregressive models. Under the assumption of normality 
in error distributions, Maximum Likelihood Estimation (MLE) and the Likelihood Ratio test 
are applicable in the context of multivariate VAR models. In this research article, we embark 
on a journey to estimate the parameters of a multivariate VAR model. We employ the method 
of Maximum Likelihood Estimation based on ordinary least squares regression. To enhance the 
accuracy of our model, we estimate the dispersion matrix of errors using Internally Studentized 
residuals. Furthermore, we introduce a test procedure for determining the optimal number of 
lags for variables within the multivariate VAR model, leveraging the power of the Likelihood 
Ratio test. 

 

INTRODUCTION: -  

Univariate time series models offer the 
advantage of predicting a variable solely 
based on its past, present, and future values. 
However, these univariate models can 
significantly enhance their explanatory 
power by incorporating political-economic 
information contained in interacting 
variables. 

In contrast, a Multivariate Time Series 
Model serves as a versatile, unrestricted 
approximation to the reduced form of an 
unknown structural specification within a 
simultaneous equations model. Pioneering 
work by Zellner and Palm in 1974 and 
subsequent research by Zellner in 1979 

have demonstrated that any structural 
model can be reformulated in the shape of a 
multivariate time series model. 

The field of time series analysis 
encompasses both linear and nonlinear 
methods and spans the realms of univariate 
and multivariate approaches. In disciplines 
such as statistics, econometrics, 
quantitative finance, seismology, 
meteorology, and geophysics, the primary 
objective of time series analysis revolves 
around "forecasting." 

Conversely, in contexts such as data 
mining, pattern recognition, and machine 
learning, time series analysis finds 
applications beyond forecasting. It extends 
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to tasks like clustering, classification, 
content-based querying, anomaly detection, 
as well as predictive modeling. Time series 
analysis thus emerges as a pivotal tool for 
exploring data dynamics and extracting 
valuable insights across diverse domains 
and applications. 

 

Vector Autoregressive (VAR) Models: 
Unraveling Multivariate Time Series 
Analysis 

Vector Autoregressive (VAR) models are a 
class of multivariate time series models 
extensively used in various fields, such as 
economics, finance, econometrics, and data 
science. These models play a crucial role in 
capturing and understanding the dynamic 
relationships between multiple time series 
variables. 

Fundamental Concepts: 

1. Multivariate Time Series Data: 
VAR models are designed for 
multivariate time series data, which 
involves a collection of related 
variables observed at multiple time 
points. These variables can be 
economic indicators, financial 
variables, or any other dataset 
where the interactions between 
variables are of interest. 

2. Lagged Relationships: VAR 
models consider the past values of 
all variables in the system to predict 
their future values. This feature 
makes VAR models different from 
univariate models, where each 
variable is predicted based on its 
own historical values. 

3. Simultaneity: VAR models 
acknowledge that variables within 
the system can influence each other 

simultaneously. This captures the 
complex interdependencies often 
observed in real-world data. 

Model Structure: 

A VAR model can be represented 
mathematically as follows: 𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2+⋯………+ 𝐴𝑃𝑌𝑡−𝑃+ 𝜀𝑡 
Here: 

• Y_tis a vector of multivariate time 
series at time t 

• A_1, A_2, ..., A_p are coefficient 
matrices that relate past values of Y 
to the current value. 

• prepresents the order of the VAR 
model, indicating how many lags 
are considered. 

• ε_t is the white noise error term. 

Applications: 

VAR models are applied in various areas: 

1. Macroeconomics: They are used to 
study the dynamic relationships 
among economic variables like 
GDP, inflation, and unemployment. 

2. Finance: VAR models help in 
analyzing the joint behavior of 
financial market variables, such as 
stock prices, interest rates, and 
exchange rates. 

3. Forecasting: VAR models are 
valuable for short- and medium-
term forecasting of multivariate 
time series data. 

4. Policy Analysis: They are 
employed to assess the impact of 
economic policies on different 
variables within an economy. 
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5. Risk Management: In financial 
risk management, VAR models are 
useful for quantifying and 
understanding the risk associated 
with portfolios. 

Model Estimation: 

Estimating a VAR model involves 
determining the coefficients ($A_1, A_2, 
..., A_p$) and the order of the model ($p). 
The most common estimation techniques 
include ordinary least squares (OLS) and 
maximum likelihood estimation (MLE). 

Impulse Response Analysis: 

One key advantage of VAR models is the 
ability to perform impulse response 
analysis. This technique helps assess how a 
shock to one variable affects all the 
variables in the system over time, shedding 
light on dynamic relationships. 

In summary, Vector Autoregressive (VAR) 
models are a powerful tool for 
understanding and forecasting multivariate 
time series data. They allow researchers and 
analysts to capture the intricacies of 
interactions between multiple variables, 
making them invaluable in various 
domains, from economics and finance to 
data science and policy analysis. 

 

Maximum Likelihood Estimates (MLE) 
of VAR Parameters using OLS 
Regression 

Vector Autoregressive (VAR) models are 
typically estimated using the MLE method, 
which maximizes the likelihood function of 
the observed data given the model. 
However, when the assumptions of the 
MLE method cannot be met, or in practical 
situations where MLE is challenging, an 
alternative approach is to estimate VAR 

parameters using OLS regression. Here's 
how this can be done: 

Step 1: Model Specification 

• Start by specifying the VAR model 
order (p), which represents the 
number of lagged observations you 
want to include. For simplicity, let's 
consider a VAR(1) model as an 
example. 

• Define your multivariate time series 
data, represented as Y_t, where t 
denotes time. 

• The VAR(1) model is given by: Y_t 
= A_1Y_(t-1) + ε_t, where A_1 is 
the coefficient matrix for lag 1 and 
ε_t is the error term at time t. 

Step 2: Data Preparation 

• Prepare your data. Ensure it is 
stationary, or make it stationary 
through differencing, if necessary, 
to meet the OLS assumptions. 

Step 3: OLS Estimation 

• For a VAR(1) model, you can 
estimate the coefficients A_1 using 
OLS regression. Each equation in 
the VAR system will have a set of 
coefficients to estimate. 

• Set up the OLS regression for each 
equation. The equation for the i-th 
variable in the VAR(1) model is as 
follows: Y_i,t = a_i + B_i Y_i,t-1 + 
ε_i,t, where a_i is the intercept, B_i 
is the coefficient for lag 1, and ε_i,t 
is the error term. 

• Estimate the coefficients for each 
equation using standard OLS 
regression. This involves 
minimizing the sum of squared 
residuals by varying the 
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coefficients. In matrix form, this can 
be represented as follows: Y = Xβ + 
ε, where Y is the vector of observed 
data, X is the matrix of lagged 
values, β is the coefficient matrix to 
be estimated, and ε is the error term. 

• Use standard OLS software or 
libraries to perform the estimation. 
In practice, statistical software like 
Python, R, or dedicated 
econometrics software can be used 
for this purpose. 

Step 4: MLE for Residuals 

• After estimating the coefficients 
using OLS, you can use the 
residuals from the OLS regression 
as the input to calculate the MLE of 
the error covariance matrix (Σ). 

• The MLE for Σ can be obtained by 
maximizing the likelihood function 
based on the residual vector ε_t. 
This step ensures that the error 
structure of the model follows a 
multivariate normal distribution. 

Step 5: Hypothesis Testing 

• Once the MLE is obtained, you can 
perform hypothesis tests on the 
VAR parameters or conduct further 
analysis as needed, such as impulse 
response analysis, Granger 
causality, or forecasting. 

It's important to note that while OLS is a 
simpler and more accessible method for 
VAR model estimation, MLE is generally 
considered a more appropriate estimation 
technique when the assumptions of the 
model are satisfied. However, in situations 
where MLE may not be feasible or when a 
quick approximation is needed, OLS 
estimation can be a viable alternative. 

ESTIMATING Ф BY USING 
STUDENTIZED RESIDUALS: 

Estimating the parameter φ (phi) using 
studentized residuals typically involves a 
statistical procedure to assess the 
significance of the parameter in a model, 
such as a time series model or regression 
model. Studentized residuals are adjusted 
residuals that take into account the 
uncertainty in the estimated model 
parameters. The parameter φ is often 
associated with autoregressive (AR) or 
moving average (MA) terms in time series 
models. 

Here's a general outline of how to estimate 
the parameter φ using studentized residuals: 

1. Model Specification: 

• Begin by specifying the time series 
model or regression model that 
contains the parameter φ. For 
example, in an autoregressive 
model (AR), φ represents the 
autoregressive coefficient. 

2. Model Estimation: 

• Estimate the model parameters, 
including φ, using the chosen 
estimation method. Common 
methods include maximum 
likelihood estimation (MLE) for 
time series models or ordinary least 
squares (OLS) for regression 
models. 

3. Calculate Residuals: 

• Compute the model residuals by 
subtracting the predicted values 
from the observed data. 

4. Calculate Studentized Residuals: 

• Studentized residuals are calculated 
by dividing the model residuals by 
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their estimated standard errors. This 
standardization allows for the 
comparison of residuals across 
different models and datasets, as it 
accounts for variations in the 
residual variance. 

5. Perform a Hypothesis Test: 

• To estimate the parameter φ, you 
can perform a hypothesis test. This 
test typically involves a null 
hypothesis that φ equals a specific 
value (e.g., φ = 0), indicating no 
effect, versus an alternative 
hypothesis that φ is not equal to that 
value. 

6. Test Statistic Calculation: 

• Calculate the test statistic using the 
studentized residuals and the null 
hypothesis. The specific test 
statistic depends on the chosen 
hypothesis test. For example, a t-
test statistic is commonly used for 
testing the significance of φ in 
regression models. 

7. Significance Testing: 

• Determine the statistical 
significance of the parameter φ by 
comparing the calculated test 
statistic to a critical value from a 
probability distribution (e.g., t-
distribution). The critical value 
depends on the chosen significance 
level (e.g., 0.05 for a 5% 
significance level). 

8. Estimation of φ: 

• If the test statistic is statistically 
significant (i.e., it exceeds the 
critical value), you can conclude 
that the parameter φ is not equal to 
the null hypothesis value. In this 

case, you can estimate the value of 
φ based on the test statistic and 
standard errors. 

It's important to choose an appropriate 
hypothesis test and significance level based 
on the specific research question and 
context. The estimation of φ using 
studentized residuals allows you to assess 
the statistical significance of the parameter 
within the chosen model. The procedure 
may vary depending on the type of model 
and hypothesis test being conducted. 

 

TESTING NUMBER OF LAGS OF 
VARIABLE FOR VAR MODEL BY USING 
THE LIKELIHOOD RATIO TEST 

 

Testing the number of lags in a Vector 
Autoregressive (VAR) model using the 
Likelihood Ratio Test is a common 
approach to determine the appropriate lag 
order for the model. This test helps find the 
optimal number of lags that best fits the 
data and minimizes unnecessary 
complexity. Here's how you can perform 
the Likelihood Ratio Test for lag order 
selection in a VAR model: 

1. Model Specification: 

• Begin by specifying the VAR 
model, including the maximum lag 
order you want to consider. A 
VAR(p) model includes p lagged 
values of the variables. 

2. Model Estimation: 

• Estimate multiple VAR models with 
different lag orders, ranging from a 
minimum lag order (usually 1) to 
the maximum lag order you have 
specified. 
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3. Likelihood Function: 

• Calculate the likelihood function for 
each estimated VAR model. The 
likelihood function measures how 
well the model fits the data. 

4. Restricted and Unrestricted Models: 

• Create two versions of each VAR 
model: the "unrestricted" model 
with the maximum lag order and a 
"restricted" model with a reduced 
lag order (e.g., one lag less). 

5. Likelihood Ratio Statistic: 

• Calculate the likelihood ratio 
statistic, denoted as LR, by 
comparing the likelihood of the 
restricted model (with fewer lags) to 
the likelihood of the unrestricted 
model (with more lags). The 
likelihood ratio is calculated as 
follows: 

LR = -2 * [log likelihood of the restricted 
model - log likelihood of the unrestricted 
model] 

6. Degrees of Freedom: 

• Determine the degrees of freedom 
for the likelihood ratio test. It is 
equal to the difference in the 
number of parameters between the 
restricted and unrestricted models. 
The degrees of freedom are usually 
(p - q), where p is the number of lags 
in the unrestricted model, and q is 
the number of lags in the restricted 
model. 

 

7. Null Hypothesis: 

• Formulate the null hypothesis (H0) 
that the additional lags in the 

unrestricted model do not provide a 
statistically significant 
improvement in model fit compared 
to the restricted model. 

8. Critical Value: 

• Choose a significance level (e.g., 
0.05) and find the critical value 
from a chi-squared distribution 
table or calculator based on the 
chosen significance level and 
degrees of freedom. 

 

9. Likelihood Ratio Test Statistic 
Comparison: 

• Compare the calculated LR statistic 
to the critical value. If the LR 
statistic exceeds the critical value, 
reject the null hypothesis, indicating 
that the additional lags in the 
unrestricted model significantly 
improve the model fit. 

10. Optimal Lag Order: 

• The optimal lag order is determined 
based on the largest lag order for 
which the null hypothesis is not 
rejected. This lag order is 
considered the most appropriate for 
the VAR model. 

By following these steps and conducting 
the Likelihood Ratio Test for different lag 
orders, you can select the lag order that 
strikes a balance between model 
complexity and goodness of fit, ultimately 
providing you with an appropriate VAR 
model for your data. 

 

Algorithm :- 
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To test for the optimal number of lags in a 
Vector Autoregression (VAR) model using 
the likelihood ratio test, you can follow 
these steps. The likelihood ratio test is used 
to compare two nested models: one with k 
lags and another with k-1 lags. 

Step 1: Define the VAR Model 

• Define your VAR(p) model, where 
'p' is the number of lags. 

• Specify the variables and their 
order. 

• Decide the maximum number of 
lags to consider (p_max). 

Step 2: Estimate the VAR(p_max) Model 

• Estimate the VAR model with 
p_max lags. 

• This will serve as the unrestricted or 
larger model. 

• You can use statistical software like 
R, Python (with libraries like 
statsmodels or VARMAX), or 
specialized time series software for 
this estimation. 

Step 3: Estimate the VAR(p_max-1) 
Model 

• Estimate the VAR model with 
p_max-1 lags. 

• This will be the restricted or smaller 
model. 

Step 4: Calculate Likelihood Ratios 

• Compute the log-likelihood for both 
the VAR(p_max) and VAR(p_max-
1) models. 

• Calculate the likelihood ratio 
statistic (LR) as the difference in 
log-likelihoods between the larger 
and smaller models: 

• LR = 2 * (log-likelihood of 
VAR(p_max) - log-
likelihood of VAR(p_max-
1)) 

Step 5: Perform Likelihood Ratio Test 

• Under the null hypothesis (H0), the 
smaller model (VAR(p_max-1)) is 
true. 

• Under the alternative hypothesis 
(H1), the larger model 
(VAR(p_max)) is true. 

• The LR statistic follows a chi-
squared distribution with degrees of 
freedom equal to the difference in 
the number of parameters between 
the two models. 

Step 6: Set Significance Level 

• Choose a significance level (e.g., 
0.05) to determine whether to reject 
the null hypothesis. 

Step 7: Compare LR Statistic to Critical 
Value 

• Calculate the critical value from the 
chi-squared distribution table for 
the chosen significance level and 
degrees of freedom. 

• Compare the LR statistic to the 
critical value. 

• If the LR statistic is greater than the 
critical value, you reject the null 
hypothesis (H0) in favor of the 
alternative hypothesis (H1), 
indicating that the VAR(p_max) 
model is preferred. 

• If the LR statistic is less than the 
critical value, you fail to reject the 
null hypothesis, indicating that the 
VAR(p_max-1) model is preferred. 
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Step 8: Interpretation 

• If you reject the null hypothesis, it 
suggests that the VAR(p_max) 
model is preferred, and you should 
proceed with p_max lags. 

• If you fail to reject the null 
hypothesis, it suggests that the 
VAR(p_max-1) model is preferred, 
and you should choose p_max-1 
lags. 

Repeat these steps with different lag values 
and compare the results to select the 
optimal number of lags for your VAR 
model. The likelihood ratio test helps you 
find the number of lags that best captures 
the temporal dependencies in your time 
series data. 

Conclusions :- 

Time series data is characterized by a 
sequence of values, all measured on the 
same scale and indexed by a time-related 
parameter. These datasets can exhibit an 
astonishing array of patterns and shapes, 
reflecting the diverse underlying functions 
they represent. In fact, the number of 
potential time series is equivalent to the 
number of real-number functions. Concepts 
closely linked to time series encompass 
longitudinal data, growth curves, repeated 
measures, economic models, multivariate 
analysis, signal processing, and system 
analysis. 

The parameters of a Vector Autoregression 
(VAR) model are typically estimated using 
the maximum likelihood estimation method 
based on ordinary least squares regression. 
Additionally, the dispersion matrix of errors 
in a VAR model can be estimated using 
internally studentized residuals, which 
helps in understanding and quantifying the 
uncertainty in the model. 

Furthermore, a test procedure has been 
developed for assessing the appropriate 
number of lags for the variables in a VAR 
model. This procedure relies on internally 
studentized residuals to make informed 
decisions about the lag structure of the 
model, ensuring that it captures the 
underlying dynamics of the data 
effectively. 
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