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Abstract 
Mild Cognitive Impairment (MCI) is an early stage of cognitive decline, often a precursor to 

Alzheimer's disease. Timely and accurate categorization of MCI is crucial for early intervention 

and treatment. This study investigates the effectiveness of using Continuous Wavelet Transform 

(CWT)-based scalogram images combined with stochastic review techniques for feature extraction 

and deep transfer learning methods for categorization. The proposed approach demonstrates 

significant improvements in classification accuracy and robustness compared to traditional 

methods. 
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Introduction 
Mild Cognitive Impairment (MCI) is a 

clinical condition that signifies a transitional 

stage between normal cognitive aging and 

more serious conditions such as Alzheimer's 

disease. Early and accurate detection of MCI 

is crucial for implementing timely 

interventions that can potentially slow the 

progression to dementia. Traditional 

diagnostic methods rely heavily on 

neuropsychological tests and clinical 

assessments, which can be subjective, time-

consuming, and often lack the sensitivity 

required for early detection. 

MCI is a condition which affects an 

individual's ability to remember things, 

perform daily activities, and may also cause 

language and vision problems [1-2]. 

Detecting and treating MCI at an early stage 

can delay or even prevent its progression to 

Alzheimer's disease. (AD) [3-4]. 

EEG signals have gained significant attention 

in the last 20 years for their ability to collect 

detailed brain activity data. Electrical activity 

in the brain can be measured using signals 

obtained through an electroencephalogram 

(EEG) [5]. Dimensionally reducing the data 

by preserving the important information 

contained in the EEG signals is the main 

objective of the feature extraction process 

[6]. 

In recent years, there has been growing 

interest in leveraging advanced machine 
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learning techniques to automate and enhance 

the accuracy of MCI diagnosis. Among these 

techniques, deep learning has shown 

tremendous potential, particularly in the field 

of medical image analysis. Convolutional 

Neural Networks (CNNs), a class of deep 

learning models, have been widely adopted 

due to their powerful feature extraction and 

classification capabilities. However, these 

models typically require large amounts of 

labeled data for training, which is often not 

feasible in medical domains where data can 

be scarce and expensive to obtain. 

Transfer learning, which involves fine-tuning 

a pre-trained model on a new, smaller dataset, 

offers a solution to this problem. By utilizing 

models pre-trained on large-scale datasets, 

transfer learning can significantly reduce the 

amount of data and computational resources 

needed for effective training. This approach 

has been successfully applied to various 

medical imaging tasks, demonstrating 

improved performance over traditional 

machine learning methods. 

Another promising development in the 

analysis of biomedical signals is the use of 

Continuous Wavelet Transform (CWT) to 

generate scalogram images. CWT provides a 

comprehensive time-frequency 

representation of non-stationary signals such 

as electroencephalogram (EEG) data, which 

is crucial for detecting subtle changes in brain 

activity associated with MCI. Scalogram 

images derived from CWT capture both the 

temporal and spectral characteristics of EEG 

signals, offering rich features for 

classification tasks. 

This study aims to investigate the 

effectiveness of combining CWT-based 

scalogram images with deep transfer learning 

methods for the categorization of MCI. We 

propose a novel approach that integrates 

stochastic review techniques to enhance the 

feature extraction process, thereby improving 

the robustness and accuracy of the 

classification. The primary contributions of 

this research include: 

1. The application of CWT to convert EEG 

signals into scalogram images, providing a 

detailed time-frequency representation. 

2. The use of stochastic review methods to 

refine and enhance the features extracted 

from scalogram images. 

3. The implementation of deep transfer 

learning, leveraging pre-trained CNN 

models, to classify MCI with high accuracy. 

By systematically analyzing the potential of 

these combined methodologies, this research 

seeks to provide a more accurate and efficient 

tool for early MCI detection, contributing to 

better clinical outcomes through timely 

intervention. The following sections will 

delve into related work, the detailed 

methodology, results, and a discussion of the 

findings. 

Related Work 

Deep Learning in Medical Imaging 

Deep learning, particularly Convolutional 

Neural Networks (CNNs), has become a 

cornerstone in medical image analysis due to 

its ability to automatically learn and extract 

complex features from raw data. CNNs have 

been successfully applied to various medical 

imaging tasks, such as tumor detection in 

MRI scans, classification of retinal diseases 

in fundus images, and segmentation of organs 

in CT scans. These advancements have paved 

the way for their application in neuroimaging 

for diagnosing neurological disorders, 

including Mild Cognitive Impairment (MCI) 

and Alzheimer's disease (AD). 
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Figure 1: Deep learning model for 3D 

computed tomography (CT) image 

 

A notable study by Litjens et al. provides an 

extensive survey on deep learning in medical 

image analysis, highlighting the significant 

improvements in diagnostic accuracy and 

efficiency compared to traditional methods. 

Additionally, transfer learning, where pre-

trained models on large datasets such as 

ImageNet are fine-tuned on specific medical 

imaging tasks, has been shown to enhance 

performance in scenarios with limited 

training data. 

Continuous Wavelet Transform (CWT) 

in EEG Analysis 

Electroencephalogram (EEG) signals are 

inherently non-stationary, making their 

analysis challenging using traditional 

Fourier-based methods. Continuous Wavelet 

Transform (CWT) offers a robust solution by 

providing a time-frequency representation of 

the signals, allowing for the capture of 

transient features that are crucial for 

diagnosing cognitive impairments. 

 
Figure 2: Continuous Wavelet Transform 

Wavelet transforms, including CWT, have 

been extensively used for EEG signal 

processing, showing effectiveness in various 

applications such as seizure detection, sleep 

stage classification, and cognitive workload 

estimation. For instance, a study by Faust et 

al. demonstrated the use of wavelet-based 

techniques for EEG processing in computer-

aided seizure detection, showcasing the 

method's capability to handle the non-

stationary nature of EEG signals and improve 

diagnostic accuracy. 

2.3. Stochastic Review and Feature 

Enhancement 

Stochastic review methods, which involve 

the application of random perturbations and 

aggregations to enhance feature extraction, 

have gained traction in improving the 

robustness of machine learning models. 

These techniques are particularly useful in 

medical imaging, where variations in data 

acquisition can introduce noise and artifacts. 

Recent research has explored stochastic 

review methods to enhance features extracted 

from medical images, leading to more 

accurate and reliable classifications. For 

example, Naik and Kumar discussed the 

application of wavelet techniques combined 

with stochastic processes for enhanced EEG 

signal analysis, highlighting improved 

performance in capturing critical signal 

characteristics. 

Integration of CWT and Deep Learning 

for MCI Classification 

Combining CWT-based scalogram images 

with deep learning models, specifically 

CNNs, presents a promising approach for 

MCI classification. Scalogram images 

derived from CWT provide a rich time-

frequency representation of EEG signals, 

which can be effectively leveraged by CNNs 

for feature extraction and classification. 
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Studies have shown that this integration leads 

to significant improvements in diagnosing 

cognitive impairments. 

For instance, Asif et al. demonstrated the use 

of wavelet transform-based features 

combined with deep learning for classifying 

cognitive states, achieving high classification 

accuracy and robustness. Similarly, transfer 

learning approaches using pre-trained models 

like ResNet have shown potential in medical 

image classification tasks, providing a means 

to leverage large-scale pre-trained models for 

specific medical applications with limited 

data. 

 

 

Figure 3: A Noval Deep Learning for MCI 

Classification 

Data Acquisition 

In the analysis of Mild Cognitive Impairment 

(MCI) using Continuous Wavelet Transform 

(CWT)-based scalogram images, the data 

acquisition process is a critical step. This 

process involves the collection and 

preparation of electroencephalogram (EEG) 

signals, which are then transformed into 

scalogram images. These images serve as 

inputs for deep transfer learning models 

designed to categorize MCI. The following 

sections outline the steps involved in the data 

acquisition process, referencing recent 

methodologies and standards in the field. 

 

EEG Signal Acquisition 

EEG signals are typically acquired using 

high-density electrode caps placed on the 

scalp. These caps record brain activity with 

high temporal resolution. The standard 10-20 

system is commonly used for electrode 

placement, ensuring consistent and 

repeatable recordings across subjects [1]. 

Preprocessing of EEG Signals 

Raw EEG signals often contain noise and 

artifacts from various sources, including 

muscle movements and environmental 

interferences. Preprocessing steps are 

necessary to enhance signal quality and 

include: 

Filtering: Bandpass filters (e.g., 0.5-50 Hz) 

are applied to remove low-frequency drifts 

and high-frequency noise [2]. 

Artifact Removal: Techniques such as 

Independent Component Analysis (ICA) are 

used to identify and remove artifacts [3]. 

Continuous Wavelet Transform (CWT) 

The preprocessed EEG signals are 

transformed using the Continuous Wavelet 

Transform to generate scalogram images. 

The CWT provides a time-frequency 

representation of the EEG signals, capturing 

both transient and oscillatory features. The 

wavelet transform is defined as: 

 

where  x(t)  is the input signal, Ψ is the 

mother wavelet, a is the scale parameter, and 

b  is the translation parameter [4]. 

Scalogram Image Generation 

The CWT coefficients obtained are used to 

create scalogram images, which are 2D 

representations of the time-frequency 
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information. These images highlight the 

frequency components of the EEG signals 

over time, which are crucial for identifying 

patterns associated with MCI. The power of 

the wavelet coefficients is typically displayed 

in the scalogram: 

 

This power representation facilitates the 

visualization of dominant frequencies and 

their temporal evolution [5]. 

Data Augmentation and Preparation 

To improve the robustness and generalization 

of the deep learning model, data 

augmentation techniques are applied to the 

scalogram images. These techniques may 

include rotations, translations, and scaling, 

ensuring the model is exposed to a variety of 

input scenarios [6]. Additionally, the dataset 

is often split into training, validation, and test 

sets to evaluate model performance 

rigorously. 

Feature Extraction 

Feature extraction is a pivotal step in the 

process of analyzing CWT-based scalogram 

images for the categorization of Mild 

Cognitive Impairment (MCI) using deep 

transfer learning methods. Effective feature 

extraction techniques can significantly 

enhance the performance of machine learning 

models by highlighting the most relevant 

patterns in the data. This section details the 

methods and techniques used for extracting 

features from scalogram images, referencing 

recent advancements and methodologies in 

the field. 

Feature Extraction Techniques 

Convolutional Neural Networks (CNNs): 

CNNs are highly effective in extracting 

features from image data. They automatically 

learn spatial hierarchies of features through 

backpropagation. For scalogram images, 

CNNs extract features such as edges, 

textures, and shapes that are indicative of 

brain activity patterns related to MCI [3]. 

Principal Component Analysis (PCA): 

PCA is used to reduce the dimensionality of 

the scalogram images while preserving the 

most significant variance. By transforming 

the data into a set of orthogonal components, 

PCA highlights the most informative features 

for classification: 

Y=XW 

where X is the input data matrix, W is the 

matrix of eigenvectors, and Y is the 

transformed data [4]. 

Discrete Wavelet Transform (DWT): 

While CWT is used for scalogram 

generation, DWT can be applied for further 

feature extraction. DWT decomposes the 

signal into different frequency bands, 

capturing localized variations in the signal 

that are relevant for detecting MCI: 

 

where cj,k are the wavelet coefficients at 

scale j and translation k [5]. 

Statistical Features: Extracting statistical 

features such as mean, standard deviation, 

skewness, and kurtosis from the wavelet 

coefficients or the scalogram images can 

provide additional information about the 

distribution and characteristics of the EEG 

signals [6]. 

Combining Features 
Combining features from different extraction 

methods can enhance the performance of the 
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classifier. Techniques such as feature fusion 

and ensemble methods are used to integrate 

features extracted from CNNs, PCA, DWT, 

and statistical measures, creating a 

comprehensive feature set for the deep 

learning model [7]. 

 

Experimental Comparisons 

The study employs transfer learning, using 

both fine-tuning and non-fine-tuning 

methods, on four pre-trained models to 

analyze a dataset of 28402 EEG signals 

collected from MCI and HC subjects. The 

dataset is divided into a testing set (75%) 

and training set (25%) which comprises of 

14757 MCI and 13645 HC samples. The 

training set contains 11067 and 10233 

samples for MCI and HC subjects 

respectively, while the testing set contains 

3690 and 3412 samples respectively. The 

main aim of the study is to differentiate the 

MCI and HC subjects. 

 

Performance Analysis 

A confusion matrix is a valuable tool to 

evaluate the performance of a 

classification algorithm, as it provides a 

breakdown of true positives, true 

negatives, false positives, and false 

negatives for a given test dataset. In the 

given table, the predicted class is denoted 

by the rows and the actual class is denoted 

by the columns. Samples that were 

classified correctly are shown in the 

diagonal entries, whereas misclassified 

samples are indicated in the entries outside 

the diagonal. Assessing a model's accuracy 

and identifying ways to improve it can be 

facilitated by utilizing this helpful tool. 

 Accuracy(A): It evaluates the ratio 

of accurate predictions made by the 

model to the total number of 

predictions made. 

 

 Precision(P): It measures the ratio of 

true positive predictions made by the 

model to the total number of positive 

predictions made. 

 

 Recall (R): It is the proportion of 

true positive predictions made by 

the model out of all actual positive 

instances. 

 

 F1-Score (F1): It is an evaluation 

metric that combines precision and 

recall into a single score, providing 

a balanced measure of both. 

 

The following table presents a comparison of 

various experimental results for categorizing 

Mild Cognitive Impairment (MCI) using 

CWT-based scalogram images and deep 

transfer learning methods. These experiments 

compare different architectures, 

preprocessing techniques, and feature 

extraction methods, showcasing their 

performance metrics such as accuracy, 

sensitivity, specificity, and F1-score. 
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TABLE 2: DESCRIPTION OF PRETRAINED MODELS WITH REPLACED FINAL LAYERS 

 

 

 

 

 

 

 

 

6.Conclusion 

This study presents a novel approach for MCI 

categorization using CWT-based scalogram 

images enhanced by stochastic review and 

classified via deep transfer learning. The 

proposed method significantly outperforms 

traditional techniques, offering a promising 

tool for early diagnosis of cognitive 

impairments. Future work will focus on 

expanding the dataset and exploring other 

deep learning architectures to further enhance 

performance. 
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