Brain Tumor classification from MRI images using generative adversarial network and Hybrid deep CNN-LSTM

Authors:

Aymen A Altae , Abdolvahab Ehsani Rad , Keyvan Mohebbi

Page No: 595-604

Abstract:

Accurate classification of brain tumors plays a vital role in clinical diagnosis and therapy. To aid in this process, we present a deep learning approach for brain tumor classification. By leveraging deep learning, radiologists can efficiently analyze the vast amount of brain MRI images, leading to faster and more accurate diagnoses. However, training deep learning models requires large centralized datasets, which can pose challenges due to privacy regulations surrounding medical data. In this study, we address this issue by developing a model that utilizes a Generative Adversarial Network (GAN) to generate synthetic brain tumor MRI images. Additionally, we propose a hybrid CNN-LSTM network to accurately identify brain tumors in MRI scans. The performance of the hybrid network achieves an impressive classification accuracy of 99.1%.

Description:

Automated Brain Tumor detection, GAN Network, deep neural network

Volume & Issue

Volume-12,ISSUE-2

Keywords

.

  • jangan lewatkan momen hoki coba spin scatter hitam di mahjong ways hari ini
  • saatnya coba mahjong ways bersama scatter hitam untuk buka cuan lebih besar
  • waktu paling pas untuk main mahjong ways dan aktifkan scatter hitamnya
  • buka hari dengan cuan mahjong ways dan scatter hitam andalan evo88
  • saat tepat putar rejeki di mahjong ways dengan keajaiban scatter hitam
  • jangan sampai terlambat spin di mahjong ways bersama scatter hitam
  • pagi siang atau malam mahjong ways dan scatter hitam selalu bisa dicoba
  • gak perlu ragu coba mahjong ways karena scatter hitam sedang dermawan
  • aktifkan hari hoki mu dengan main mahjong ways dan scatter hitam
  • mau hoki besar mainlah mahjong ways di saat scatter hitam sering muncul