CONTENT BASED IMAGE RETRIEVAL USING DEEP LEARNING

Authors:

Tadakamalla Umesh, Gourishetti Bhavana, Sridevi Polishety, Namoju Anusha

Page No: 184-190

Abstract:

Content-based image retrieval (CBIR) systems play a crucial role in efficiently managing and retrieving images based on their visual content. Traditional CBIR methods often rely on handcrafted features, limiting their ability to capture and abstract visual information. With the advent of deep learning, particularly convolutional neural networks (CNNs) in enhancing CBIR systems directly from image data.This paper proposes a novel approach for CBIR leveraging deep learning techniques. To evaluate the effectiveness of our method, we conduct experiments on standard image datasets and compare our results with traditional CBIR techniques. We utilize a pretrained CNN architecture, such as ResNet,Mobilenet ,VGG, to extract high-level features from images, which are then used to measure similarities between query images and images within a database.

Description:

.

Volume & Issue

Volume-12,ISSUE-7

Keywords

Content-based image retrieval (CBIR) has emerged as a critical technology in managing and retrieving images based on their visual content rather than relying on textual annotations or metadata

  • jangan lewatkan momen hoki coba spin scatter hitam di mahjong ways hari ini
  • saatnya coba mahjong ways bersama scatter hitam untuk buka cuan lebih besar
  • waktu paling pas untuk main mahjong ways dan aktifkan scatter hitamnya
  • buka hari dengan cuan mahjong ways dan scatter hitam andalan evo88
  • saat tepat putar rejeki di mahjong ways dengan keajaiban scatter hitam
  • jangan sampai terlambat spin di mahjong ways bersama scatter hitam
  • pagi siang atau malam mahjong ways dan scatter hitam selalu bisa dicoba
  • gak perlu ragu coba mahjong ways karena scatter hitam sedang dermawan
  • aktifkan hari hoki mu dengan main mahjong ways dan scatter hitam
  • mau hoki besar mainlah mahjong ways di saat scatter hitam sering muncul