Image Forgery Detection using Efficient LBP and CNN

Authors:

A.V.S Sudhakara Rao, Dodda Tejaswi, Gera Sahithi Vijayam, Bitra Bala NagaLakshmi, Dasari Sai Spandana

Page No: 761-768

Abstract:

Image forgery detection has been a critical area of research in recent years, as digital images can be easily manipulated using various tools and techniques. This paper proposes an approach to detect image forgery using Efficient LBP and CNN. Efficient LBP is a texture descriptor that extracts local features from images, while CNN is a deep learning algorithm that can learn hierarchical features. The combination of these two techniques can effectively detect various types of image forgery. In this paper, we provide an overview of Image Forgery Detection using Efficient LBP and CNN, including its advantages, limitations, and future directions. We also review some recent studies that have used this approach and discuss their results. The proposed approach shows promising results in detecting image forgery, and it can be used to ensure the authenticity of images in various applications

Description:

Convolutional Neural Network, Local Binary Pattern, LBPNet, Deep Learning

Volume & Issue

Volume-12,Issue-4

Keywords

.

  • jangan lewatkan momen hoki coba spin scatter hitam di mahjong ways hari ini
  • saatnya coba mahjong ways bersama scatter hitam untuk buka cuan lebih besar
  • waktu paling pas untuk main mahjong ways dan aktifkan scatter hitamnya
  • buka hari dengan cuan mahjong ways dan scatter hitam andalan evo88
  • saat tepat putar rejeki di mahjong ways dengan keajaiban scatter hitam
  • jangan sampai terlambat spin di mahjong ways bersama scatter hitam
  • pagi siang atau malam mahjong ways dan scatter hitam selalu bisa dicoba
  • gak perlu ragu coba mahjong ways karena scatter hitam sedang dermawan
  • aktifkan hari hoki mu dengan main mahjong ways dan scatter hitam
  • mau hoki besar mainlah mahjong ways di saat scatter hitam sering muncul