SPAM EMAIL CLASSIFICATION USING TENSORFLOW

Authors:

Ms.SK.MULLA ALMAS, Kota Akhil kumar, Lam Bharadwaja, Muppasani Vinay , Kotha Poojith

Page No: 928-935

Abstract:

Reports on Google After the deployment of Tensor flow, its open source machine-learning platform, to support existing spam detection, Gmail is blocking 100 million more spam emails every day. In Gmail, machine learning is nothing new. In order to identify spam, Google has long used machine-learning models and rule-based filters. According to reports, the company's current security measures have stopped more than 99.9% of spam, phishing, and malware from reaching Gmail inboxes. Attackers of today look for fresh ways to target the 5 million commercial clients and 1.5 billion users of Gmail with cutting-edge threats. The amount of unwanted emails has increased due to the increased usage of social media globally, making the implementation of a reliable system to filter out such issues necessary. Email spam is the most prevalent issue.

Description:

Machine learning, Deep learning, Convolution Neural Networks, LSTM, Bi- LSTM.

Volume & Issue

Volume-12,Issue-4

Keywords

.

  • jangan lewatkan momen hoki coba spin scatter hitam di mahjong ways hari ini
  • saatnya coba mahjong ways bersama scatter hitam untuk buka cuan lebih besar
  • waktu paling pas untuk main mahjong ways dan aktifkan scatter hitamnya
  • buka hari dengan cuan mahjong ways dan scatter hitam andalan evo88
  • saat tepat putar rejeki di mahjong ways dengan keajaiban scatter hitam
  • jangan sampai terlambat spin di mahjong ways bersama scatter hitam
  • pagi siang atau malam mahjong ways dan scatter hitam selalu bisa dicoba
  • gak perlu ragu coba mahjong ways karena scatter hitam sedang dermawan
  • aktifkan hari hoki mu dengan main mahjong ways dan scatter hitam
  • mau hoki besar mainlah mahjong ways di saat scatter hitam sering muncul