AUTOMATED INAPPROPRIATE CONTENT DETECTION ON YOUTUBE: A DEEP LEARNING FRAMEWORK

Authors:

M. Mounika, B.Aparna

Page No: 34-42

Abstract:

YouTube's video content has grown exponentially, drawing billions of viewers, the vast majority of whom are young. Additionally, malicious uploaders use this site to disseminate disturbing visual content, such as improper content for minors via animated cartoon videos. Therefore, it is strongly advised that social media networks have an automated real-time video content screening method. This paper suggests a revolutionary deep learning-based architecture for identifying and categorising films that include unsuitable information. A pre-trained convolutional neural network (CNN) model called EfficientNet-B7 from ImageNet is used in the suggested framework to extract video descriptors. These are subsequently fed into a bidirectional long short-term memory (BiLSTM) network, which learns efficient video representations and performs multiclass video classification

Description:

.

Volume & Issue

Volume-13,ISSUE-11

Keywords

YouTube's video content has grown exponentially, drawing billions of viewers, the vast majority of whom are young

Teknik Penangkal Boncos Pemicu Maxwin Rahasia Kekayaan pro Pluer di Game Olympus Situs Game Online Gampang Menang di Akhir Tahun 2024 Pola Paten Gates Of Olympus Waktu Bermain Olympus Agar Menang Maksimal Bet Kecil Bikin Tajir Melintir Cek Putaran Mahjong Ways 2 Hari Ini Kombinasi Pola Akurat Olympus Mahjong Ways Modal Minim Bocoran RTP Penghujung Tahun 2024 Link Terbaru Mahjong Ways 1 Terpercaya Bocoran RTP Terpanas Special Natal Bocoran Strategi OP Ala Admin Jarwo Game Online Thailand Gampang Profit Tips dan Trik Menang di Zeus Olympus Tips Menang Fantastis di Gates Of Olympus Mania Bocoran Lima Game Special Nataru 2025 Empat Strategi Jitu Mahjong Anti Rungkad Cara Baru Main Starlight Princess Anti Boncos JP Terbesar Mahjong Ways Dengan Bocoran Pola Terbaik Info RTP Starlight Princess Hari Ini