PREDICTIVE MODELING FOR EARLY CARDIAC ARREST DETECTION IN NEWBORNS USING MACHINE LEARNING IN THE CARDIAC ICU

Authors:

D. Saikrishna, M. Srilekha

Page No: 62-72

Abstract:

Newborn cardiac arrest is a frightening yet common medical emergency. To give these infants the greatest care and treatment possible, early identification is essential. The development of precise and effective diagnostic instruments for early diagnosis as well as the identification of possible biomarkers and indications of cardiac arrest in neonates have been the main topics of recent study. A variety of imaging methods, including computed tomography and echocardiography, may aid in the early identification of cardiac arrest. The objective of this study is to use statistical models to create a Cardiac Machine Learning model (CMLM) for the early diagnosis of cardiac arrest in neonates in the Cardiac Intensive Care Unit (CICU). The neonate's physiological data were combined to identify the cardiac arrest occurrences.

Description:

.

Volume & Issue

Volume-13,ISSUE-11

Keywords

The suggested CMLA achieved a 0.912 delta-p value, 0.894 FDR value, 0.076 FOR value, 0.859 prevalence threshold value, and 0.842 CSI value in a training (Tr) comparative zone.

Teknik Penangkal Boncos Pemicu Maxwin Rahasia Kekayaan pro Pluer di Game Olympus Situs Game Online Gampang Menang di Akhir Tahun 2024 Pola Paten Gates Of Olympus Waktu Bermain Olympus Agar Menang Maksimal Bet Kecil Bikin Tajir Melintir Cek Putaran Mahjong Ways 2 Hari Ini Kombinasi Pola Akurat Olympus Mahjong Ways Modal Minim Bocoran RTP Penghujung Tahun 2024 Link Terbaru Mahjong Ways 1 Terpercaya Bocoran RTP Terpanas Special Natal Bocoran Strategi OP Ala Admin Jarwo Game Online Thailand Gampang Profit Tips dan Trik Menang di Zeus Olympus Tips Menang Fantastis di Gates Of Olympus Mania Bocoran Lima Game Special Nataru 2025 Empat Strategi Jitu Mahjong Anti Rungkad Cara Baru Main Starlight Princess Anti Boncos JP Terbesar Mahjong Ways Dengan Bocoran Pola Terbaik Info RTP Starlight Princess Hari Ini