A NOVEL APPROACH TO OPTIMIZING MACHINE LEARNING ALGORITHMS FOR LARGE-SCALE DATA SETS

Authors:

S.Gnana Prasanna

Page No: 74-78

Abstract:

Machine learning (ML) has witnessed remarkable advancements, driven by the increasing availability of large-scale data. However, applying traditional ML algorithms to such massive datasets often results in computational inefficiencies, slow training times, and memory limitations. This paper presents a novel approach to optimizing machine learning algorithms by combining data pre-processing techniques with parallel computing strategies. Specifically, we introduce an adaptive hybrid framework that leverages both dimensionality reduction and parallelization to enhance the scalability and efficiency of ML models. The framework is tested on several well-known datasets, demonstrating significant reductions in computational time while maintaining or even improving model accuracy. Our results highlight the potential of integrating optimization strategies to tackle the challenges of big data in machine learning, providing a pathway for future research and development in this area.

Description:

.

Volume & Issue

Volume-14,ISSUE-3

Keywords

Machine Learning, Large-Scale Data, Dimensionality Reduction, Parallel Computing, Scalability, Optimization, Big Data

  • jangan lewatkan momen hoki coba spin scatter hitam di mahjong ways hari ini
  • saatnya coba mahjong ways bersama scatter hitam untuk buka cuan lebih besar
  • waktu paling pas untuk main mahjong ways dan aktifkan scatter hitamnya
  • buka hari dengan cuan mahjong ways dan scatter hitam andalan evo88
  • saat tepat putar rejeki di mahjong ways dengan keajaiban scatter hitam
  • jangan sampai terlambat spin di mahjong ways bersama scatter hitam
  • pagi siang atau malam mahjong ways dan scatter hitam selalu bisa dicoba
  • gak perlu ragu coba mahjong ways karena scatter hitam sedang dermawan
  • aktifkan hari hoki mu dengan main mahjong ways dan scatter hitam
  • mau hoki besar mainlah mahjong ways di saat scatter hitam sering muncul