An Efficient Privacy Enhancing Cross SILO Federated Learning and Application For False Data Attack Detection in Smart Grids

Authors:

Pulapakura Ashish Prince, Pilli Manoj Kumar, Kuna Akhil Kumar, Dr. B.Rajalingam

Page No: 1118-1125

Abstract:

Federated Learning is a prominent machine learning paradigm which helps tackle data privacy issues by allowing clients tostore their raw data locally and transfer only their local model parameters to an aggregator server to collaboratively train a sharedglobal model. However, federated learning is vulnerable to inference attacks from dishonest aggregators who can infer informationabout clients’ training data from their model parameters. To deal with this issue, most of the proposed schemes in literature eitherrequire a non-colluded server setting, a trusted third-party to compute master secret keys or a secure multiparty computation protocollwhich is still inefficient over multiple iterations of computing an aggregation model.

Description:

.

Volume & Issue

Volume-14,Issue-4

Keywords

privacy-preserving, federated learning, encryption, secret sharing, false data injection attack detection.

  • jangan lewatkan momen hoki coba spin scatter hitam di mahjong ways hari ini
  • saatnya coba mahjong ways bersama scatter hitam untuk buka cuan lebih besar
  • waktu paling pas untuk main mahjong ways dan aktifkan scatter hitamnya
  • buka hari dengan cuan mahjong ways dan scatter hitam andalan evo88
  • saat tepat putar rejeki di mahjong ways dengan keajaiban scatter hitam
  • jangan sampai terlambat spin di mahjong ways bersama scatter hitam
  • pagi siang atau malam mahjong ways dan scatter hitam selalu bisa dicoba
  • gak perlu ragu coba mahjong ways karena scatter hitam sedang dermawan
  • aktifkan hari hoki mu dengan main mahjong ways dan scatter hitam
  • mau hoki besar mainlah mahjong ways di saat scatter hitam sering muncul