Identification of Harmful Attacks in IoT Using Deep Learning

Authors:

Jangam Nagaraju, Deekshitha Pingali, Kesireddy Venkata Veera sai, Chintanaboina Anjali

Page No: 64-75

Abstract:

The swift IoT devices has transformed industries, but it has also made networks more vulnerable to a wide range of cyber threats. This study develops deep learning-based models to identify malicious activity in IoT ecosystems, utilizing a combination of Generative Adversarial Networks (GANs), Capsule Networks, and Multi-Layer Perceptrons (MLPs). GANs are employed to address data imbalance by generating synthetic IoT data, including uncommon attack scenarios. Capsule Networks are used to detect intricate attack patterns by analyzing complex feature relationships. Finally, the MLP classifier leverages these rich representations to accurately differentiate between benign and malicious behaviors. Experimental findings highlight the efficacy of the suggested model in enhancing the security of IoT networks.

Description:

.

Volume & Issue

Volume-14,ISSUE-1

Keywords

Keywords: Internet of Things (IoT), Deep Learning, Cybersecurity, Network Security, Anomaly Detection, Multi-Layer Perceptrons (MLPs), Generative Adversarial Networks (GANs)

  • jangan lewatkan momen hoki coba spin scatter hitam di mahjong ways hari ini
  • saatnya coba mahjong ways bersama scatter hitam untuk buka cuan lebih besar
  • waktu paling pas untuk main mahjong ways dan aktifkan scatter hitamnya
  • buka hari dengan cuan mahjong ways dan scatter hitam andalan evo88
  • saat tepat putar rejeki di mahjong ways dengan keajaiban scatter hitam
  • jangan sampai terlambat spin di mahjong ways bersama scatter hitam
  • pagi siang atau malam mahjong ways dan scatter hitam selalu bisa dicoba
  • gak perlu ragu coba mahjong ways karena scatter hitam sedang dermawan
  • aktifkan hari hoki mu dengan main mahjong ways dan scatter hitam
  • mau hoki besar mainlah mahjong ways di saat scatter hitam sering muncul